| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cjth | GIF version | ||
| Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| cjth | ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cju 9069 | . . . 4 ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | |
| 2 | riotasbc 5938 | . . . 4 ⊢ (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) → [(℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℂ → [(℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
| 4 | cjval 11271 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) | |
| 5 | 4 | sbceq1d 3010 | . . 3 ⊢ (𝐴 ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ [(℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
| 6 | 3, 5 | mpbird 167 | . 2 ⊢ (𝐴 ∈ ℂ → [(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
| 7 | riotacl 5937 | . . . . 5 ⊢ (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) → (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ ℂ) | |
| 8 | 1, 7 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ ℂ) |
| 9 | 4, 8 | eqeltrd 2284 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) |
| 10 | oveq2 5975 | . . . . . 6 ⊢ (𝑥 = (∗‘𝐴) → (𝐴 + 𝑥) = (𝐴 + (∗‘𝐴))) | |
| 11 | 10 | eleq1d 2276 | . . . . 5 ⊢ (𝑥 = (∗‘𝐴) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + (∗‘𝐴)) ∈ ℝ)) |
| 12 | oveq2 5975 | . . . . . . 7 ⊢ (𝑥 = (∗‘𝐴) → (𝐴 − 𝑥) = (𝐴 − (∗‘𝐴))) | |
| 13 | 12 | oveq2d 5983 | . . . . . 6 ⊢ (𝑥 = (∗‘𝐴) → (i · (𝐴 − 𝑥)) = (i · (𝐴 − (∗‘𝐴)))) |
| 14 | 13 | eleq1d 2276 | . . . . 5 ⊢ (𝑥 = (∗‘𝐴) → ((i · (𝐴 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) |
| 15 | 11, 14 | anbi12d 473 | . . . 4 ⊢ (𝑥 = (∗‘𝐴) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))) |
| 16 | 15 | sbcieg 3038 | . . 3 ⊢ ((∗‘𝐴) ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))) |
| 17 | 9, 16 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))) |
| 18 | 6, 17 | mpbid 147 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 ∃!wreu 2488 [wsbc 3005 ‘cfv 5290 ℩crio 5921 (class class class)co 5967 ℂcc 7958 ℝcr 7959 ici 7962 + caddc 7963 · cmul 7965 − cmin 8278 ∗ccj 11265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 df-reap 8683 df-cj 11268 |
| This theorem is referenced by: recl 11279 crre 11283 |
| Copyright terms: Public domain | W3C validator |