Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cjth | GIF version |
Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
cjth | ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cju 8856 | . . . 4 ⊢ (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | |
2 | riotasbc 5813 | . . . 4 ⊢ (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) → [(℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ ℂ → [(℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
4 | cjval 10787 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) | |
5 | 4 | sbceq1d 2956 | . . 3 ⊢ (𝐴 ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ [(℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
6 | 3, 5 | mpbird 166 | . 2 ⊢ (𝐴 ∈ ℂ → [(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
7 | riotacl 5812 | . . . . 5 ⊢ (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) → (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ ℂ) | |
8 | 1, 7 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℂ → (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) ∈ ℂ) |
9 | 4, 8 | eqeltrd 2243 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) |
10 | oveq2 5850 | . . . . . 6 ⊢ (𝑥 = (∗‘𝐴) → (𝐴 + 𝑥) = (𝐴 + (∗‘𝐴))) | |
11 | 10 | eleq1d 2235 | . . . . 5 ⊢ (𝑥 = (∗‘𝐴) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + (∗‘𝐴)) ∈ ℝ)) |
12 | oveq2 5850 | . . . . . . 7 ⊢ (𝑥 = (∗‘𝐴) → (𝐴 − 𝑥) = (𝐴 − (∗‘𝐴))) | |
13 | 12 | oveq2d 5858 | . . . . . 6 ⊢ (𝑥 = (∗‘𝐴) → (i · (𝐴 − 𝑥)) = (i · (𝐴 − (∗‘𝐴)))) |
14 | 13 | eleq1d 2235 | . . . . 5 ⊢ (𝑥 = (∗‘𝐴) → ((i · (𝐴 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) |
15 | 11, 14 | anbi12d 465 | . . . 4 ⊢ (𝑥 = (∗‘𝐴) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))) |
16 | 15 | sbcieg 2983 | . . 3 ⊢ ((∗‘𝐴) ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))) |
17 | 9, 16 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))) |
18 | 6, 17 | mpbid 146 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃!wreu 2446 [wsbc 2951 ‘cfv 5188 ℩crio 5797 (class class class)co 5842 ℂcc 7751 ℝcr 7752 ici 7755 + caddc 7756 · cmul 7758 − cmin 8069 ∗ccj 10781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-sub 8071 df-neg 8072 df-reap 8473 df-cj 10784 |
This theorem is referenced by: recl 10795 crre 10799 |
Copyright terms: Public domain | W3C validator |