ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjth GIF version

Theorem cjth 10774
Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjth (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))

Proof of Theorem cjth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cju 8847 . . . 4 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
2 riotasbc 5807 . . . 4 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → [(𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
31, 2syl 14 . . 3 (𝐴 ∈ ℂ → [(𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
4 cjval 10773 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) = (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
54sbceq1d 2951 . . 3 (𝐴 ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ [(𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
63, 5mpbird 166 . 2 (𝐴 ∈ ℂ → [(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
7 riotacl 5806 . . . . 5 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) ∈ ℂ)
81, 7syl 14 . . . 4 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)) ∈ ℂ)
94, 8eqeltrd 2241 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
10 oveq2 5844 . . . . . 6 (𝑥 = (∗‘𝐴) → (𝐴 + 𝑥) = (𝐴 + (∗‘𝐴)))
1110eleq1d 2233 . . . . 5 (𝑥 = (∗‘𝐴) → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + (∗‘𝐴)) ∈ ℝ))
12 oveq2 5844 . . . . . . 7 (𝑥 = (∗‘𝐴) → (𝐴𝑥) = (𝐴 − (∗‘𝐴)))
1312oveq2d 5852 . . . . . 6 (𝑥 = (∗‘𝐴) → (i · (𝐴𝑥)) = (i · (𝐴 − (∗‘𝐴))))
1413eleq1d 2233 . . . . 5 (𝑥 = (∗‘𝐴) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
1511, 14anbi12d 465 . . . 4 (𝑥 = (∗‘𝐴) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)))
1615sbcieg 2978 . . 3 ((∗‘𝐴) ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)))
179, 16syl 14 . 2 (𝐴 ∈ ℂ → ([(∗‘𝐴) / 𝑥]((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)))
186, 17mpbid 146 1 (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  ∃!wreu 2444  [wsbc 2946  cfv 5182  crio 5791  (class class class)co 5836  cc 7742  cr 7743  ici 7746   + caddc 7747   · cmul 7749  cmin 8060  ccj 10767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-ltxr 7929  df-sub 8062  df-neg 8063  df-reap 8464  df-cj 10770
This theorem is referenced by:  recl  10781  crre  10785
  Copyright terms: Public domain W3C validator