ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzshftral GIF version

Theorem fzshftral 9775
Description: Shift the scanning order inside of a quantification over a finite set of sequential integers. (Contributed by NM, 27-Nov-2005.)
Assertion
Ref Expression
fzshftral ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Distinct variable groups:   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑗)

Proof of Theorem fzshftral
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0z 8963 . . . 4 0 ∈ ℤ
2 fzrevral 9772 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
31, 2mp3an3 1285 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
433adant3 982 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑))
5 zsubcl 8993 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 − 𝑁) ∈ ℤ)
61, 5mpan 418 . . . 4 (𝑁 ∈ ℤ → (0 − 𝑁) ∈ ℤ)
7 zsubcl 8993 . . . . 5 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 − 𝑀) ∈ ℤ)
81, 7mpan 418 . . . 4 (𝑀 ∈ ℤ → (0 − 𝑀) ∈ ℤ)
9 id 19 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
10 fzrevral 9772 . . . 4 (((0 − 𝑁) ∈ ℤ ∧ (0 − 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
116, 8, 9, 10syl3an 1239 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
12113com12 1166 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑥 ∈ ((0 − 𝑁)...(0 − 𝑀))[(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑))
13 elfzelz 9693 . . . . . 6 (𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) → 𝑘 ∈ ℤ)
14 zsubcl 8993 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝐾𝑘) ∈ ℤ)
15 oveq2 5734 . . . . . . . 8 (𝑥 = (𝐾𝑘) → (0 − 𝑥) = (0 − (𝐾𝑘)))
1615sbcco3g 3021 . . . . . . 7 ((𝐾𝑘) ∈ ℤ → ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑))
1714, 16syl 14 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑))
1813, 17sylan2 282 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))) → ([(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑[(0 − (𝐾𝑘)) / 𝑗]𝜑))
1918ralbidva 2405 . . . 4 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑))
20193ad2ant3 985 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑))
21 zcn 8957 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
22 zcn 8957 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
23 zcn 8957 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
24 df-neg 7853 . . . . . . . . . 10 -𝑀 = (0 − 𝑀)
2524oveq2i 5737 . . . . . . . . 9 (𝐾 − -𝑀) = (𝐾 − (0 − 𝑀))
26 subneg 7928 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝐾 + 𝑀))
27 addcom 7816 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 + 𝑀) = (𝑀 + 𝐾))
2826, 27eqtrd 2145 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − -𝑀) = (𝑀 + 𝐾))
2925, 28syl5eqr 2159 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
30293adant3 982 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑀)) = (𝑀 + 𝐾))
31 df-neg 7853 . . . . . . . . . 10 -𝑁 = (0 − 𝑁)
3231oveq2i 5737 . . . . . . . . 9 (𝐾 − -𝑁) = (𝐾 − (0 − 𝑁))
33 subneg 7928 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝐾 + 𝑁))
34 addcom 7816 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 + 𝑁) = (𝑁 + 𝐾))
3533, 34eqtrd 2145 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − -𝑁) = (𝑁 + 𝐾))
3632, 35syl5eqr 2159 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
37363adant2 981 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (0 − 𝑁)) = (𝑁 + 𝐾))
3830, 37oveq12d 5744 . . . . . 6 ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
39383coml 1169 . . . . 5 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4021, 22, 23, 39syl3an 1239 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁))) = ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
4140raleqdv 2604 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑))
42 elfzelz 9693 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
4342zcnd 9072 . . . . . . 7 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
44 df-neg 7853 . . . . . . . 8 -(𝐾𝑘) = (0 − (𝐾𝑘))
45 negsubdi2 7938 . . . . . . . 8 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → -(𝐾𝑘) = (𝑘𝐾))
4644, 45syl5eqr 2159 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4723, 43, 46syl2an 285 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (0 − (𝐾𝑘)) = (𝑘𝐾))
4847sbceq1d 2881 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ([(0 − (𝐾𝑘)) / 𝑗]𝜑[(𝑘𝐾) / 𝑗]𝜑))
4948ralbidva 2405 . . . 4 (𝐾 ∈ ℤ → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
50493ad2ant3 985 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(0 − (𝐾𝑘)) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
5120, 41, 503bitrd 213 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (0 − 𝑀))...(𝐾 − (0 − 𝑁)))[(𝐾𝑘) / 𝑥][(0 − 𝑥) / 𝑗]𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
524, 12, 513bitrd 213 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ (𝑀...𝑁)𝜑 ↔ ∀𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))[(𝑘𝐾) / 𝑗]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 943   = wceq 1312  wcel 1461  wral 2388  [wsbc 2876  (class class class)co 5726  cc 7539  0cc0 7541   + caddc 7544  cmin 7850  -cneg 7851  cz 8952  ...cfz 9677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-fz 9678
This theorem is referenced by:  fzoshftral  9902
  Copyright terms: Public domain W3C validator