ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4s2 GIF version

Theorem uzind4s2 9714
Description: Induction on the upper set of integers that starts at an integer 𝑀, using explicit substitution. The hypotheses are the basis and the induction step. Use this instead of uzind4s 9713 when 𝑗 and 𝑘 must be distinct in [(𝑘 + 1) / 𝑗]𝜑. (Contributed by NM, 16-Nov-2005.)
Hypotheses
Ref Expression
uzind4s2.1 (𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑)
uzind4s2.2 (𝑘 ∈ (ℤ𝑀) → ([𝑘 / 𝑗]𝜑[(𝑘 + 1) / 𝑗]𝜑))
Assertion
Ref Expression
uzind4s2 (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑗]𝜑)
Distinct variable groups:   𝑘,𝑀   𝜑,𝑘   𝑗,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝑀(𝑗)   𝑁(𝑗,𝑘)

Proof of Theorem uzind4s2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3000 . 2 (𝑚 = 𝑀 → ([𝑚 / 𝑗]𝜑[𝑀 / 𝑗]𝜑))
2 dfsbcq 3000 . 2 (𝑚 = 𝑛 → ([𝑚 / 𝑗]𝜑[𝑛 / 𝑗]𝜑))
3 dfsbcq 3000 . 2 (𝑚 = (𝑛 + 1) → ([𝑚 / 𝑗]𝜑[(𝑛 + 1) / 𝑗]𝜑))
4 dfsbcq 3000 . 2 (𝑚 = 𝑁 → ([𝑚 / 𝑗]𝜑[𝑁 / 𝑗]𝜑))
5 uzind4s2.1 . 2 (𝑀 ∈ ℤ → [𝑀 / 𝑗]𝜑)
6 dfsbcq 3000 . . . 4 (𝑘 = 𝑛 → ([𝑘 / 𝑗]𝜑[𝑛 / 𝑗]𝜑))
7 oveq1 5953 . . . . 5 (𝑘 = 𝑛 → (𝑘 + 1) = (𝑛 + 1))
87sbceq1d 3003 . . . 4 (𝑘 = 𝑛 → ([(𝑘 + 1) / 𝑗]𝜑[(𝑛 + 1) / 𝑗]𝜑))
96, 8imbi12d 234 . . 3 (𝑘 = 𝑛 → (([𝑘 / 𝑗]𝜑[(𝑘 + 1) / 𝑗]𝜑) ↔ ([𝑛 / 𝑗]𝜑[(𝑛 + 1) / 𝑗]𝜑)))
10 uzind4s2.2 . . 3 (𝑘 ∈ (ℤ𝑀) → ([𝑘 / 𝑗]𝜑[(𝑘 + 1) / 𝑗]𝜑))
119, 10vtoclga 2839 . 2 (𝑛 ∈ (ℤ𝑀) → ([𝑛 / 𝑗]𝜑[(𝑛 + 1) / 𝑗]𝜑))
121, 2, 3, 4, 5, 11uzind4 9711 1 (𝑁 ∈ (ℤ𝑀) → [𝑁 / 𝑗]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  [wsbc 2998  cfv 5272  (class class class)co 5946  1c1 7928   + caddc 7930  cz 9374  cuz 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator