| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbrng | GIF version | ||
| Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| csbrng | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbabg 3146 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵}) | |
| 2 | sbcexg 3044 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵)) | |
| 3 | sbcel2g 3105 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) | |
| 4 | 3 | exbidv 1839 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 5 | 2, 4 | bitrd 188 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 6 | 5 | abbidv 2314 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
| 7 | 1, 6 | eqtrd 2229 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
| 8 | dfrn3 4855 | . . 3 ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} | |
| 9 | 8 | csbeq2i 3111 | . 2 ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} |
| 10 | dfrn3 4855 | . 2 ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
| 11 | 7, 9, 10 | 3eqtr4g 2254 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 [wsbc 2989 ⦋csb 3084 〈cop 3625 ran crn 4664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-cnv 4671 df-dm 4673 df-rn 4674 |
| This theorem is referenced by: sbcfg 5406 |
| Copyright terms: Public domain | W3C validator |