| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbrng | GIF version | ||
| Description: Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.) |
| Ref | Expression |
|---|---|
| csbrng | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbabg 3166 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵}) | |
| 2 | sbcexg 3063 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵)) | |
| 3 | sbcel2g 3125 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ 〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) | |
| 4 | 3 | exbidv 1851 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (∃𝑤[𝐴 / 𝑥]〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 5 | 2, 4 | bitrd 188 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵 ↔ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵)) |
| 6 | 5 | abbidv 2327 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ [𝐴 / 𝑥]∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
| 7 | 1, 6 | eqtrd 2242 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵}) |
| 8 | dfrn3 4888 | . . 3 ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} | |
| 9 | 8 | csbeq2i 3131 | . 2 ⊢ ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ 𝐵} |
| 10 | dfrn3 4888 | . 2 ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤〈𝑤, 𝑦〉 ∈ ⦋𝐴 / 𝑥⦌𝐵} | |
| 11 | 7, 9, 10 | 3eqtr4g 2267 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∃wex 1518 ∈ wcel 2180 {cab 2195 [wsbc 3008 ⦋csb 3104 〈cop 3649 ran crn 4697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-cnv 4704 df-dm 4706 df-rn 4707 |
| This theorem is referenced by: sbcfg 5448 |
| Copyright terms: Public domain | W3C validator |