| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbciegf | GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbciegf.1 | ⊢ Ⅎ𝑥𝜓 |
| sbciegf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbciegf | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbciegf.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 2 | sbciegf.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ax-gen 1475 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| 4 | sbciegft 3039 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | |
| 5 | 1, 3, 4 | mp3an23 1344 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1373 = wceq 1375 Ⅎwnf 1486 ∈ wcel 2180 [wsbc 3008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-sbc 3009 |
| This theorem is referenced by: sbcieg 3041 iunxsngf 4022 opelopabgf 4337 opelopabf 4342 eqerlem 6681 |
| Copyright terms: Public domain | W3C validator |