ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqerlem GIF version

Theorem eqerlem 6467
Description: Lemma for eqer 6468. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
eqer.1 (𝑥 = 𝑦𝐴 = 𝐵)
eqer.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
Assertion
Ref Expression
eqerlem (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦   𝑥,𝑧,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑤)   𝐵(𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem eqerlem
StepHypRef Expression
1 eqer.2 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
21brabsb 4190 . 2 (𝑧𝑅𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵)
3 vex 2692 . . 3 𝑧 ∈ V
4 nfcsb1v 3039 . . . . 5 𝑥𝑧 / 𝑥𝐴
5 nfcsb1v 3039 . . . . 5 𝑥𝑤 / 𝑥𝐴
64, 5nfeq 2290 . . . 4 𝑥𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴
7 vex 2692 . . . . . 6 𝑤 ∈ V
8 nfv 1509 . . . . . . 7 𝑦 𝐴 = 𝑤 / 𝑥𝐴
9 vex 2692 . . . . . . . . . 10 𝑦 ∈ V
10 nfcv 2282 . . . . . . . . . 10 𝑥𝐵
11 eqer.1 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐵)
129, 10, 11csbief 3048 . . . . . . . . 9 𝑦 / 𝑥𝐴 = 𝐵
13 csbeq1 3009 . . . . . . . . 9 (𝑦 = 𝑤𝑦 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
1412, 13syl5eqr 2187 . . . . . . . 8 (𝑦 = 𝑤𝐵 = 𝑤 / 𝑥𝐴)
1514eqeq2d 2152 . . . . . . 7 (𝑦 = 𝑤 → (𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴))
168, 15sbciegf 2943 . . . . . 6 (𝑤 ∈ V → ([𝑤 / 𝑦]𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴))
177, 16ax-mp 5 . . . . 5 ([𝑤 / 𝑦]𝐴 = 𝐵𝐴 = 𝑤 / 𝑥𝐴)
18 csbeq1a 3015 . . . . . 6 (𝑥 = 𝑧𝐴 = 𝑧 / 𝑥𝐴)
1918eqeq1d 2149 . . . . 5 (𝑥 = 𝑧 → (𝐴 = 𝑤 / 𝑥𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
2017, 19syl5bb 191 . . . 4 (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
216, 20sbciegf 2943 . . 3 (𝑧 ∈ V → ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴))
223, 21ax-mp 5 . 2 ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
232, 22bitri 183 1 (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1332  wcel 1481  Vcvv 2689  [wsbc 2912  csb 3006   class class class wbr 3936  {copab 3995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691  df-sbc 2913  df-csb 3007  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-br 3937  df-opab 3997
This theorem is referenced by:  eqer  6468
  Copyright terms: Public domain W3C validator