| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqerlem | GIF version | ||
| Description: Lemma for eqer 6624. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | 
| eqer.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | 
| Ref | Expression | 
|---|---|
| eqerlem | ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqer.2 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | |
| 2 | 1 | brabsb 4295 | . 2 ⊢ (𝑧𝑅𝑤 ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵) | 
| 3 | vex 2766 | . . 3 ⊢ 𝑧 ∈ V | |
| 4 | nfcsb1v 3117 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 | |
| 5 | nfcsb1v 3117 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐴 | |
| 6 | 4, 5 | nfeq 2347 | . . . 4 ⊢ Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 | 
| 7 | vex 2766 | . . . . . 6 ⊢ 𝑤 ∈ V | |
| 8 | nfv 1542 | . . . . . . 7 ⊢ Ⅎ𝑦 𝐴 = ⦋𝑤 / 𝑥⦌𝐴 | |
| 9 | vex 2766 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 10 | nfcv 2339 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝐵 | |
| 11 | eqer.1 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 12 | 9, 10, 11 | csbief 3129 | . . . . . . . . 9 ⊢ ⦋𝑦 / 𝑥⦌𝐴 = 𝐵 | 
| 13 | csbeq1 3087 | . . . . . . . . 9 ⊢ (𝑦 = 𝑤 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
| 14 | 12, 13 | eqtr3id 2243 | . . . . . . . 8 ⊢ (𝑦 = 𝑤 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 15 | 14 | eqeq2d 2208 | . . . . . . 7 ⊢ (𝑦 = 𝑤 → (𝐴 = 𝐵 ↔ 𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 16 | 8, 15 | sbciegf 3021 | . . . . . 6 ⊢ (𝑤 ∈ V → ([𝑤 / 𝑦]𝐴 = 𝐵 ↔ 𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 17 | 7, 16 | ax-mp 5 | . . . . 5 ⊢ ([𝑤 / 𝑦]𝐴 = 𝐵 ↔ 𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 18 | csbeq1a 3093 | . . . . . 6 ⊢ (𝑥 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
| 19 | 18 | eqeq1d 2205 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 20 | 17, 19 | bitrid 192 | . . . 4 ⊢ (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝐴 = 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 21 | 6, 20 | sbciegf 3021 | . . 3 ⊢ (𝑧 ∈ V → ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 22 | 3, 21 | ax-mp 5 | . 2 ⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝐴 = 𝐵 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 23 | 2, 22 | bitri 184 | 1 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 [wsbc 2989 ⦋csb 3084 class class class wbr 4033 {copab 4093 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 | 
| This theorem is referenced by: eqer 6624 | 
| Copyright terms: Public domain | W3C validator |