ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcieg GIF version

Theorem sbcieg 3007
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.)
Hypothesis
Ref Expression
sbcieg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbcieg (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem sbcieg
StepHypRef Expression
1 nfv 1538 . 2 𝑥𝜓
2 sbcieg.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2sbciegf 3006 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1363  wcel 2158  [wsbc 2974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-sbc 2975
This theorem is referenced by:  sbcie  3009  ralsng  3644  rexsng  3645  ralrnmpt  5671  rexrnmpt  5672  nn1suc  8952  cjth  10869  bezoutlemnewy  12011  bezoutlemstep  12012  bezoutlema  12014  bezoutlemb  12015  prmind2  12134
  Copyright terms: Public domain W3C validator