![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcieg | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
sbcieg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcieg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1538 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | sbcieg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | sbciegf 3006 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∈ wcel 2158 [wsbc 2974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-sbc 2975 |
This theorem is referenced by: sbcie 3009 ralsng 3644 rexsng 3645 ralrnmpt 5671 rexrnmpt 5672 nn1suc 8952 cjth 10869 bezoutlemnewy 12011 bezoutlemstep 12012 bezoutlema 12014 bezoutlemb 12015 prmind2 12134 |
Copyright terms: Public domain | W3C validator |