| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqeq1d | GIF version | ||
| Description: Deduction from equality to equivalence of equalities. (Contributed by NM, 27-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| eqeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| eqeq1d | ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqeq1 2203 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | 
| Copyright terms: Public domain | W3C validator |