ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fabexg GIF version

Theorem fabexg 5475
Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.)
Hypothesis
Ref Expression
fabexg.1 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
Assertion
Ref Expression
fabexg ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)

Proof of Theorem fabexg
StepHypRef Expression
1 xpexg 4797 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
2 pwexg 4232 . 2 ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V)
3 fabexg.1 . . . . 5 𝐹 = {𝑥 ∣ (𝑥:𝐴𝐵𝜑)}
4 fssxp 5453 . . . . . . . 8 (𝑥:𝐴𝐵𝑥 ⊆ (𝐴 × 𝐵))
5 velpw 3628 . . . . . . . 8 (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵))
64, 5sylibr 134 . . . . . . 7 (𝑥:𝐴𝐵𝑥 ∈ 𝒫 (𝐴 × 𝐵))
76anim1i 340 . . . . . 6 ((𝑥:𝐴𝐵𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑))
87ss2abi 3269 . . . . 5 {𝑥 ∣ (𝑥:𝐴𝐵𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
93, 8eqsstri 3229 . . . 4 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)}
10 ssab2 3281 . . . 4 {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵)
119, 10sstri 3206 . . 3 𝐹 ⊆ 𝒫 (𝐴 × 𝐵)
12 ssexg 4191 . . 3 ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V)
1311, 12mpan 424 . 2 (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V)
141, 2, 133syl 17 1 ((𝐴𝐶𝐵𝐷) → 𝐹 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  wss 3170  𝒫 cpw 3621   × cxp 4681  wf 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284
This theorem is referenced by:  fabex  5476  f1oabexg  5546
  Copyright terms: Public domain W3C validator