| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fabexg | GIF version | ||
| Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) |
| Ref | Expression |
|---|---|
| fabexg.1 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 4797 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
| 2 | pwexg 4232 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V) | |
| 3 | fabexg.1 | . . . . 5 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
| 4 | fssxp 5453 | . . . . . . . 8 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ⊆ (𝐴 × 𝐵)) | |
| 5 | velpw 3628 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵)) | |
| 6 | 4, 5 | sylibr 134 | . . . . . . 7 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ∈ 𝒫 (𝐴 × 𝐵)) |
| 7 | 6 | anim1i 340 | . . . . . 6 ⊢ ((𝑥:𝐴⟶𝐵 ∧ 𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)) |
| 8 | 7 | ss2abi 3269 | . . . . 5 ⊢ {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
| 9 | 3, 8 | eqsstri 3229 | . . . 4 ⊢ 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
| 10 | ssab2 3281 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵) | |
| 11 | 9, 10 | sstri 3206 | . . 3 ⊢ 𝐹 ⊆ 𝒫 (𝐴 × 𝐵) |
| 12 | ssexg 4191 | . . 3 ⊢ ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V) | |
| 13 | 11, 12 | mpan 424 | . 2 ⊢ (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V) |
| 14 | 1, 2, 13 | 3syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 {cab 2192 Vcvv 2773 ⊆ wss 3170 𝒫 cpw 3621 × cxp 4681 ⟶wf 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-xp 4689 df-rel 4690 df-cnv 4691 df-dm 4693 df-rn 4694 df-fun 5282 df-fn 5283 df-f 5284 |
| This theorem is referenced by: fabex 5476 f1oabexg 5546 |
| Copyright terms: Public domain | W3C validator |