| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fabexg | GIF version | ||
| Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008.) |
| Ref | Expression |
|---|---|
| fabexg.1 | ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} |
| Ref | Expression |
|---|---|
| fabexg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpexg 4832 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
| 2 | pwexg 4263 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → 𝒫 (𝐴 × 𝐵) ∈ V) | |
| 3 | fabexg.1 | . . . . 5 ⊢ 𝐹 = {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} | |
| 4 | fssxp 5490 | . . . . . . . 8 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ⊆ (𝐴 × 𝐵)) | |
| 5 | velpw 3656 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ↔ 𝑥 ⊆ (𝐴 × 𝐵)) | |
| 6 | 4, 5 | sylibr 134 | . . . . . . 7 ⊢ (𝑥:𝐴⟶𝐵 → 𝑥 ∈ 𝒫 (𝐴 × 𝐵)) |
| 7 | 6 | anim1i 340 | . . . . . 6 ⊢ ((𝑥:𝐴⟶𝐵 ∧ 𝜑) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)) |
| 8 | 7 | ss2abi 3296 | . . . . 5 ⊢ {𝑥 ∣ (𝑥:𝐴⟶𝐵 ∧ 𝜑)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
| 9 | 3, 8 | eqsstri 3256 | . . . 4 ⊢ 𝐹 ⊆ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} |
| 10 | ssab2 3308 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 (𝐴 × 𝐵) ∧ 𝜑)} ⊆ 𝒫 (𝐴 × 𝐵) | |
| 11 | 9, 10 | sstri 3233 | . . 3 ⊢ 𝐹 ⊆ 𝒫 (𝐴 × 𝐵) |
| 12 | ssexg 4222 | . . 3 ⊢ ((𝐹 ⊆ 𝒫 (𝐴 × 𝐵) ∧ 𝒫 (𝐴 × 𝐵) ∈ V) → 𝐹 ∈ V) | |
| 13 | 11, 12 | mpan 424 | . 2 ⊢ (𝒫 (𝐴 × 𝐵) ∈ V → 𝐹 ∈ V) |
| 14 | 1, 2, 13 | 3syl 17 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝐹 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 ⊆ wss 3197 𝒫 cpw 3649 × cxp 4716 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 |
| This theorem is referenced by: fabex 5513 f1oabexg 5583 |
| Copyright terms: Public domain | W3C validator |