ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi GIF version

Theorem abssi 3299
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
abssi {𝑥𝜑} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3 (𝜑𝑥𝐴)
21ss2abi 3296 . 2 {𝑥𝜑} ⊆ {𝑥𝑥𝐴}
3 abid2 2350 . 2 {𝑥𝑥𝐴} = 𝐴
42, 3sseqtri 3258 1 {𝑥𝜑} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  {cab 2215  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-in 3203  df-ss 3210
This theorem is referenced by:  ssab2  3308  abf  3535  intab  3951  opabss  4147  relopabi  4846  exse2  5101  mpoexw  6357  tfrlem8  6462  frecabex  6542  fiprc  6966  fival  7133  nqprxx  7729  ltnqex  7732  gtnqex  7733  recexprlemell  7805  recexprlemelu  7806  recexprlempr  7815  4sqlem1  12906  topnex  14754  2sqlem7  15794
  Copyright terms: Public domain W3C validator