![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abssi | GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 3252 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2314 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 3214 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 {cab 2179 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3160 df-ss 3167 |
This theorem is referenced by: ssab2 3264 abf 3491 intab 3900 opabss 4094 relopabi 4788 exse2 5040 mpoexw 6268 tfrlem8 6373 frecabex 6453 fiprc 6871 fival 7031 nqprxx 7608 ltnqex 7611 gtnqex 7612 recexprlemell 7684 recexprlemelu 7685 recexprlempr 7694 4sqlem1 12529 topnex 14265 2sqlem7 15278 |
Copyright terms: Public domain | W3C validator |