ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi GIF version

Theorem abssi 3267
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
abssi {𝑥𝜑} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3 (𝜑𝑥𝐴)
21ss2abi 3264 . 2 {𝑥𝜑} ⊆ {𝑥𝑥𝐴}
3 abid2 2325 . 2 {𝑥𝑥𝐴} = 𝐴
42, 3sseqtri 3226 1 {𝑥𝜑} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  {cab 2190  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-in 3171  df-ss 3178
This theorem is referenced by:  ssab2  3276  abf  3503  intab  3913  opabss  4107  relopabi  4802  exse2  5055  mpoexw  6298  tfrlem8  6403  frecabex  6483  fiprc  6906  fival  7071  nqprxx  7658  ltnqex  7661  gtnqex  7662  recexprlemell  7734  recexprlemelu  7735  recexprlempr  7744  4sqlem1  12653  topnex  14500  2sqlem7  15540
  Copyright terms: Public domain W3C validator