| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssi | GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ss2abi 3269 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | abid2 2327 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 2, 3 | sseqtri 3231 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 {cab 2192 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-in 3176 df-ss 3183 |
| This theorem is referenced by: ssab2 3281 abf 3508 intab 3923 opabss 4119 relopabi 4816 exse2 5070 mpoexw 6317 tfrlem8 6422 frecabex 6502 fiprc 6926 fival 7093 nqprxx 7689 ltnqex 7692 gtnqex 7693 recexprlemell 7765 recexprlemelu 7766 recexprlempr 7775 4sqlem1 12796 topnex 14643 2sqlem7 15683 |
| Copyright terms: Public domain | W3C validator |