![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abssi | GIF version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
Ref | Expression |
---|---|
abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | 1 | ss2abi 3251 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
3 | abid2 2314 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
4 | 2, 3 | sseqtri 3213 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 {cab 2179 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssab2 3263 abf 3490 intab 3899 opabss 4093 relopabi 4787 exse2 5039 mpoexw 6266 tfrlem8 6371 frecabex 6451 fiprc 6869 fival 7029 nqprxx 7606 ltnqex 7609 gtnqex 7610 recexprlemell 7682 recexprlemelu 7683 recexprlempr 7692 4sqlem1 12526 topnex 14254 2sqlem7 15208 |
Copyright terms: Public domain | W3C validator |