ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi GIF version

Theorem abssi 3222
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
abssi {𝑥𝜑} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3 (𝜑𝑥𝐴)
21ss2abi 3219 . 2 {𝑥𝜑} ⊆ {𝑥𝑥𝐴}
3 abid2 2291 . 2 {𝑥𝑥𝐴} = 𝐴
42, 3sseqtri 3181 1 {𝑥𝜑} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  {cab 2156  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134
This theorem is referenced by:  ssab2  3231  abf  3458  intab  3860  opabss  4053  relopabi  4737  exse2  4985  mpoexw  6192  tfrlem8  6297  frecabex  6377  fiprc  6793  fival  6947  nqprxx  7508  ltnqex  7511  gtnqex  7512  recexprlemell  7584  recexprlemelu  7585  recexprlempr  7594  4sqlem1  12340  topnex  12880  2sqlem7  13751
  Copyright terms: Public domain W3C validator