| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abssi | GIF version | ||
| Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
| Ref | Expression |
|---|---|
| abssi.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| abssi | ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abssi.1 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | 1 | ss2abi 3296 | . 2 ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 3 | abid2 2350 | . 2 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
| 4 | 2, 3 | sseqtri 3258 | 1 ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 {cab 2215 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssab2 3308 abf 3535 intab 3951 opabss 4147 relopabi 4846 exse2 5101 mpoexw 6357 tfrlem8 6462 frecabex 6542 fiprc 6966 fival 7133 nqprxx 7729 ltnqex 7732 gtnqex 7733 recexprlemell 7805 recexprlemelu 7806 recexprlempr 7815 4sqlem1 12906 topnex 14754 2sqlem7 15794 |
| Copyright terms: Public domain | W3C validator |