ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssi GIF version

Theorem abssi 3272
Description: Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
Hypothesis
Ref Expression
abssi.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
abssi {𝑥𝜑} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem abssi
StepHypRef Expression
1 abssi.1 . . 3 (𝜑𝑥𝐴)
21ss2abi 3269 . 2 {𝑥𝜑} ⊆ {𝑥𝑥𝐴}
3 abid2 2327 . 2 {𝑥𝑥𝐴} = 𝐴
42, 3sseqtri 3231 1 {𝑥𝜑} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  {cab 2192  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3176  df-ss 3183
This theorem is referenced by:  ssab2  3281  abf  3508  intab  3923  opabss  4119  relopabi  4816  exse2  5070  mpoexw  6317  tfrlem8  6422  frecabex  6502  fiprc  6926  fival  7093  nqprxx  7689  ltnqex  7692  gtnqex  7693  recexprlemell  7765  recexprlemelu  7766  recexprlempr  7775  4sqlem1  12796  topnex  14643  2sqlem7  15683
  Copyright terms: Public domain W3C validator