ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmopabss GIF version

Theorem dmopabss 4874
Description: Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
Assertion
Ref Expression
dmopabss dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dmopabss
StepHypRef Expression
1 dmopab 4873 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)}
2 19.42v 1918 . . . 4 (∃𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ∃𝑦𝜑))
32abbii 2309 . . 3 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)}
4 ssab2 3263 . . 3 {𝑥 ∣ (𝑥𝐴 ∧ ∃𝑦𝜑)} ⊆ 𝐴
53, 4eqsstri 3211 . 2 {𝑥 ∣ ∃𝑦(𝑥𝐴𝜑)} ⊆ 𝐴
61, 5eqsstri 3211 1 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff set class
Syntax hints:  wa 104  wex 1503  wcel 2164  {cab 2179  wss 3153  {copab 4089  dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-dm 4669
This theorem is referenced by:  opabex  5782
  Copyright terms: Public domain W3C validator