| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intmin | GIF version | ||
| Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| intmin | ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | 1 | elintrab 3899 | . . . 4 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥)) |
| 3 | ssid 3214 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
| 4 | sseq2 3218 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐴)) | |
| 5 | eleq2 2270 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)) | |
| 6 | 4, 5 | imbi12d 234 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) ↔ (𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
| 7 | 6 | rspcv 2874 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) → (𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
| 8 | 3, 7 | mpii 44 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴)) |
| 9 | 2, 8 | biimtrid 152 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝑦 ∈ 𝐴)) |
| 10 | 9 | ssrdv 3200 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ⊆ 𝐴) |
| 11 | ssintub 3905 | . . 3 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} | |
| 12 | 11 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}) |
| 13 | 10, 12 | eqssd 3211 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ∀wral 2485 {crab 2489 ⊆ wss 3167 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-in 3173 df-ss 3180 df-int 3888 |
| This theorem is referenced by: intmin2 3913 bm2.5ii 4548 onsucmin 4559 lspid 14203 cldcls 14630 |
| Copyright terms: Public domain | W3C validator |