Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intmin | GIF version |
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
intmin | ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | 1 | elintrab 3836 | . . . 4 ⊢ (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ↔ ∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥)) |
3 | ssid 3162 | . . . . 5 ⊢ 𝐴 ⊆ 𝐴 | |
4 | sseq2 3166 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐴)) | |
5 | eleq2 2230 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)) | |
6 | 4, 5 | imbi12d 233 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) ↔ (𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
7 | 6 | rspcv 2826 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) → (𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴))) |
8 | 3, 7 | mpii 44 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐴)) |
9 | 2, 8 | syl5bi 151 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑦 ∈ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} → 𝑦 ∈ 𝐴)) |
10 | 9 | ssrdv 3148 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} ⊆ 𝐴) |
11 | ssintub 3842 | . . 3 ⊢ 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} | |
12 | 11 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥}) |
13 | 10, 12 | eqssd 3159 | 1 ⊢ (𝐴 ∈ 𝐵 → ∩ {𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥} = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 ∀wral 2444 {crab 2448 ⊆ wss 3116 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: intmin2 3850 bm2.5ii 4473 onsucmin 4484 cldcls 12754 |
Copyright terms: Public domain | W3C validator |