![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssun3 | GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun3 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3163 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | sstr2 3032 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐵 ∪ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
3 | 1, 2 | mpi 15 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∪ cun 2997 ⊆ wss 2999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 |
This theorem is referenced by: ssun 3179 xpsspw 4550 |
Copyright terms: Public domain | W3C validator |