Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun3 GIF version

Theorem ssun3 3165
 Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun3 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun3
StepHypRef Expression
1 ssun1 3163 . 2 𝐵 ⊆ (𝐵𝐶)
2 sstr2 3032 . 2 (𝐴𝐵 → (𝐵 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶)))
31, 2mpi 15 1 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∪ cun 2997   ⊆ wss 2999 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070 This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3003  df-in 3005  df-ss 3012 This theorem is referenced by:  ssun  3179  xpsspw  4550
 Copyright terms: Public domain W3C validator