| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3327 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | uncom 3308 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 1, 2 | sseqtri 3218 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3155 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssun4 3330 elun2 3332 unv 3489 un00 3498 snsspr2 3772 snsstp3 3775 unexb 4478 rnexg 4932 brtpos0 6319 ac6sfi 6968 caserel 7162 pnfxr 8098 ltrelxr 8106 un0mulcl 9302 fsumsplit 11591 fprodsplitdc 11780 prdssca 12979 lspun 14036 cnfldcj 14199 cnfldtset 14200 cnfldle 14201 cnfldds 14202 dvmptfsum 15069 elply2 15079 elplyd 15085 ply1term 15087 plyaddlem1 15091 plymullem1 15092 plymullem 15094 lgsdir2lem3 15379 lgsquadlem2 15427 bdunexb 15674 |
| Copyright terms: Public domain | W3C validator |