ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 GIF version

Theorem ssun2 3324
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2 𝐴 ⊆ (𝐵𝐴)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3323 . 2 𝐴 ⊆ (𝐴𝐵)
2 uncom 3304 . 2 (𝐴𝐵) = (𝐵𝐴)
31, 2sseqtri 3214 1 𝐴 ⊆ (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  cun 3152  wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167
This theorem is referenced by:  ssun4  3326  elun2  3328  unv  3485  un00  3494  snsspr2  3768  snsstp3  3771  unexb  4474  rnexg  4928  brtpos0  6307  ac6sfi  6956  caserel  7148  pnfxr  8074  ltrelxr  8082  un0mulcl  9277  fsumsplit  11553  fprodsplitdc  11742  lspun  13901  cnfldcj  14064  cnfldtset  14065  cnfldle  14066  cnfldds  14067  dvmptfsum  14904  elply2  14914  elplyd  14920  ply1term  14922  plyaddlem1  14926  plymullem1  14927  plymullem  14929  lgsdir2lem3  15187  lgsquadlem2  15235  bdunexb  15482
  Copyright terms: Public domain W3C validator