ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 GIF version

Theorem ssun2 3341
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2 𝐴 ⊆ (𝐵𝐴)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3340 . 2 𝐴 ⊆ (𝐴𝐵)
2 uncom 3321 . 2 (𝐴𝐵) = (𝐵𝐴)
31, 2sseqtri 3231 1 𝐴 ⊆ (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  cun 3168  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183
This theorem is referenced by:  ssun4  3343  elun2  3345  unv  3502  un00  3511  snsspr2  3788  snsstp3  3791  unexb  4497  rnexg  4952  brtpos0  6351  ac6sfi  7010  caserel  7204  pnfxr  8145  ltrelxr  8153  un0mulcl  9349  ccatclab  11073  ccatrn  11088  fsumsplit  11793  fprodsplitdc  11982  prdssca  13182  lspun  14239  cnfldcj  14402  cnfldtset  14403  cnfldle  14404  cnfldds  14405  dvmptfsum  15272  elply2  15282  elplyd  15288  ply1term  15290  plyaddlem1  15294  plymullem1  15295  plymullem  15297  lgsdir2lem3  15582  lgsquadlem2  15630  bdunexb  15994
  Copyright terms: Public domain W3C validator