Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version |
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3285 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | uncom 3266 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 1, 2 | sseqtri 3176 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3114 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: ssun4 3288 elun2 3290 unv 3446 un00 3455 snsspr2 3722 snsstp3 3725 unexb 4420 rnexg 4869 brtpos0 6220 ac6sfi 6864 caserel 7052 pnfxr 7951 ltrelxr 7959 un0mulcl 9148 fsumsplit 11348 fprodsplitdc 11537 lgsdir2lem3 13571 bdunexb 13802 |
Copyright terms: Public domain | W3C validator |