Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version |
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3290 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | uncom 3271 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 1, 2 | sseqtri 3181 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3119 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssun4 3293 elun2 3295 unv 3452 un00 3461 snsspr2 3729 snsstp3 3732 unexb 4427 rnexg 4876 brtpos0 6231 ac6sfi 6876 caserel 7064 pnfxr 7972 ltrelxr 7980 un0mulcl 9169 fsumsplit 11370 fprodsplitdc 11559 lgsdir2lem3 13725 bdunexb 13955 |
Copyright terms: Public domain | W3C validator |