ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 GIF version

Theorem ssun2 3328
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2 𝐴 ⊆ (𝐵𝐴)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3327 . 2 𝐴 ⊆ (𝐴𝐵)
2 uncom 3308 . 2 (𝐴𝐵) = (𝐵𝐴)
31, 2sseqtri 3218 1 𝐴 ⊆ (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  cun 3155  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  ssun4  3330  elun2  3332  unv  3489  un00  3498  snsspr2  3772  snsstp3  3775  unexb  4478  rnexg  4932  brtpos0  6319  ac6sfi  6968  caserel  7162  pnfxr  8096  ltrelxr  8104  un0mulcl  9300  fsumsplit  11589  fprodsplitdc  11778  prdssca  12977  lspun  14034  cnfldcj  14197  cnfldtset  14198  cnfldle  14199  cnfldds  14200  dvmptfsum  15045  elply2  15055  elplyd  15061  ply1term  15063  plyaddlem1  15067  plymullem1  15068  plymullem  15070  lgsdir2lem3  15355  lgsquadlem2  15403  bdunexb  15650
  Copyright terms: Public domain W3C validator