| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3327 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | uncom 3308 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 1, 2 | sseqtri 3218 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3155 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssun4 3330 elun2 3332 unv 3489 un00 3498 snsspr2 3772 snsstp3 3775 unexb 4478 rnexg 4932 brtpos0 6319 ac6sfi 6968 caserel 7162 pnfxr 8096 ltrelxr 8104 un0mulcl 9300 fsumsplit 11589 fprodsplitdc 11778 prdssca 12977 lspun 14034 cnfldcj 14197 cnfldtset 14198 cnfldle 14199 cnfldds 14200 dvmptfsum 15045 elply2 15055 elplyd 15061 ply1term 15063 plyaddlem1 15067 plymullem1 15068 plymullem 15070 lgsdir2lem3 15355 lgsquadlem2 15403 bdunexb 15650 |
| Copyright terms: Public domain | W3C validator |