| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3340 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | uncom 3321 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 1, 2 | sseqtri 3231 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3168 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 |
| This theorem is referenced by: ssun4 3343 elun2 3345 unv 3502 un00 3511 snsspr2 3788 snsstp3 3791 unexb 4497 rnexg 4952 brtpos0 6351 ac6sfi 7010 caserel 7204 pnfxr 8145 ltrelxr 8153 un0mulcl 9349 ccatclab 11073 ccatrn 11088 fsumsplit 11793 fprodsplitdc 11982 prdssca 13182 lspun 14239 cnfldcj 14402 cnfldtset 14403 cnfldle 14404 cnfldds 14405 dvmptfsum 15272 elply2 15282 elplyd 15288 ply1term 15290 plyaddlem1 15294 plymullem1 15295 plymullem 15297 lgsdir2lem3 15582 lgsquadlem2 15630 bdunexb 15994 |
| Copyright terms: Public domain | W3C validator |