ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 GIF version

Theorem ssun2 3368
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2 𝐴 ⊆ (𝐵𝐴)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3367 . 2 𝐴 ⊆ (𝐴𝐵)
2 uncom 3348 . 2 (𝐴𝐵) = (𝐵𝐴)
31, 2sseqtri 3258 1 𝐴 ⊆ (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  cun 3195  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  ssun4  3370  elun2  3372  unv  3529  un00  3538  snsspr2  3816  snsstp3  3819  unexb  4532  rnexg  4988  brtpos0  6396  ac6sfi  7056  caserel  7250  pnfxr  8195  ltrelxr  8203  un0mulcl  9399  ccatclab  11124  ccatrn  11139  fsumsplit  11913  fprodsplitdc  12102  prdssca  13303  lspun  14360  cnfldcj  14523  cnfldtset  14524  cnfldle  14525  cnfldds  14526  dvmptfsum  15393  elply2  15403  elplyd  15409  ply1term  15411  plyaddlem1  15415  plymullem1  15416  plymullem  15418  lgsdir2lem3  15703  lgsquadlem2  15751  bdunexb  16241
  Copyright terms: Public domain W3C validator