| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3367 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | uncom 3348 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 1, 2 | sseqtri 3258 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3195 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssun4 3370 elun2 3372 unv 3529 un00 3538 snsspr2 3816 snsstp3 3819 unexb 4532 rnexg 4988 brtpos0 6396 ac6sfi 7056 caserel 7250 pnfxr 8195 ltrelxr 8203 un0mulcl 9399 ccatclab 11124 ccatrn 11139 fsumsplit 11913 fprodsplitdc 12102 prdssca 13303 lspun 14360 cnfldcj 14523 cnfldtset 14524 cnfldle 14525 cnfldds 14526 dvmptfsum 15393 elply2 15403 elplyd 15409 ply1term 15411 plyaddlem1 15415 plymullem1 15416 plymullem 15418 lgsdir2lem3 15703 lgsquadlem2 15751 bdunexb 16241 |
| Copyright terms: Public domain | W3C validator |