ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 GIF version

Theorem ssun2 3327
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2 𝐴 ⊆ (𝐵𝐴)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3326 . 2 𝐴 ⊆ (𝐴𝐵)
2 uncom 3307 . 2 (𝐴𝐵) = (𝐵𝐴)
31, 2sseqtri 3217 1 𝐴 ⊆ (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  cun 3155  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  ssun4  3329  elun2  3331  unv  3488  un00  3497  snsspr2  3771  snsstp3  3774  unexb  4477  rnexg  4931  brtpos0  6310  ac6sfi  6959  caserel  7153  pnfxr  8079  ltrelxr  8087  un0mulcl  9283  fsumsplit  11572  fprodsplitdc  11761  lspun  13958  cnfldcj  14121  cnfldtset  14122  cnfldle  14123  cnfldds  14124  dvmptfsum  14961  elply2  14971  elplyd  14977  ply1term  14979  plyaddlem1  14983  plymullem1  14984  plymullem  14986  lgsdir2lem3  15271  lgsquadlem2  15319  bdunexb  15566
  Copyright terms: Public domain W3C validator