| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version | ||
| Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssun1 3326 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | uncom 3307 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 3 | 1, 2 | sseqtri 3217 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: ∪ cun 3155 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ssun4 3329 elun2 3331 unv 3488 un00 3497 snsspr2 3771 snsstp3 3774 unexb 4477 rnexg 4931 brtpos0 6310 ac6sfi 6959 caserel 7153 pnfxr 8079 ltrelxr 8087 un0mulcl 9283 fsumsplit 11572 fprodsplitdc 11761 lspun 13958 cnfldcj 14121 cnfldtset 14122 cnfldle 14123 cnfldds 14124 dvmptfsum 14961 elply2 14971 elplyd 14977 ply1term 14979 plyaddlem1 14983 plymullem1 14984 plymullem 14986 lgsdir2lem3 15271 lgsquadlem2 15319 bdunexb 15566 | 
| Copyright terms: Public domain | W3C validator |