ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun2 GIF version

Theorem ssun2 3328
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
Assertion
Ref Expression
ssun2 𝐴 ⊆ (𝐵𝐴)

Proof of Theorem ssun2
StepHypRef Expression
1 ssun1 3327 . 2 𝐴 ⊆ (𝐴𝐵)
2 uncom 3308 . 2 (𝐴𝐵) = (𝐵𝐴)
31, 2sseqtri 3218 1 𝐴 ⊆ (𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  cun 3155  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  ssun4  3330  elun2  3332  unv  3489  un00  3498  snsspr2  3772  snsstp3  3775  unexb  4478  rnexg  4932  brtpos0  6319  ac6sfi  6968  caserel  7162  pnfxr  8098  ltrelxr  8106  un0mulcl  9302  fsumsplit  11591  fprodsplitdc  11780  prdssca  12979  lspun  14036  cnfldcj  14199  cnfldtset  14200  cnfldle  14201  cnfldds  14202  dvmptfsum  15069  elply2  15079  elplyd  15085  ply1term  15087  plyaddlem1  15091  plymullem1  15092  plymullem  15094  lgsdir2lem3  15379  lgsquadlem2  15427  bdunexb  15674
  Copyright terms: Public domain W3C validator