![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version |
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3203 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | uncom 3184 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 1, 2 | sseqtri 3095 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3033 ⊆ wss 3035 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 |
This theorem is referenced by: ssun4 3206 elun2 3208 unv 3364 un00 3373 snsspr2 3633 snsstp3 3636 unexb 4321 rnexg 4760 brtpos0 6101 ac6sfi 6743 caserel 6922 pnfxr 7736 ltrelxr 7743 un0mulcl 8909 fsumsplit 11062 bdunexb 12801 |
Copyright terms: Public domain | W3C validator |