![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssun2 | GIF version |
Description: Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
ssun2 | ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3322 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | uncom 3303 | . 2 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
3 | 1, 2 | sseqtri 3213 | 1 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3151 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssun4 3325 elun2 3327 unv 3484 un00 3493 snsspr2 3767 snsstp3 3770 unexb 4473 rnexg 4927 brtpos0 6305 ac6sfi 6954 caserel 7146 pnfxr 8072 ltrelxr 8080 un0mulcl 9274 fsumsplit 11550 fprodsplitdc 11739 lspun 13898 cnfldcj 14056 elply2 14881 elplyd 14887 ply1term 14889 plyaddlem1 14893 plymullem1 14894 plymullem 14896 lgsdir2lem3 15146 bdunexb 15412 |
Copyright terms: Public domain | W3C validator |