| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl121anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl121anc.5 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl121anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 2, 3 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
| 5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl121anc.5 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 7 | 1, 4, 5, 6 | syl3anc 1250 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl122anc 1259 tfisi 4640 tfrcllemsucfn 6449 sbthlemi6 7076 sbthlemi8 7078 div32apd 8900 div13apd 8901 expdivapd 10845 swrdsbslen 11133 modfsummodlemstep 11818 pcqmul 12676 pcid 12697 pcneg 12698 pc2dvds 12703 pcz 12705 pcaddlem 12712 pcadd 12713 pcmpt2 12717 pcbc 12724 qexpz 12725 expnprm 12726 ennnfonelemg 12824 ssblex 14953 |
| Copyright terms: Public domain | W3C validator |