Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl121anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl121anc.5 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl121anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 304 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl121anc.5 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 1, 4, 5, 6 | syl3anc 1228 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: syl122anc 1237 tfisi 4563 tfrcllemsucfn 6317 sbthlemi6 6923 sbthlemi8 6925 div32apd 8706 div13apd 8707 expdivapd 10598 modfsummodlemstep 11394 pcqmul 12231 pcid 12251 pcneg 12252 pc2dvds 12257 pcz 12259 pcaddlem 12266 pcadd 12267 pcmpt2 12270 pcbc 12277 qexpz 12278 expnprm 12279 ennnfonelemg 12332 ssblex 13031 |
Copyright terms: Public domain | W3C validator |