ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl121anc GIF version

Theorem syl121anc 1243
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
syl121anc.5 ((𝜓 ∧ (𝜒𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl121anc (𝜑𝜂)

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . . 3 (𝜑𝜒)
3 sylXanc.3 . . 3 (𝜑𝜃)
42, 3jca 306 . 2 (𝜑 → (𝜒𝜃))
5 sylXanc.4 . 2 (𝜑𝜏)
6 syl121anc.5 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ 𝜏) → 𝜂)
71, 4, 5, 6syl3anc 1238 1 (𝜑𝜂)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  syl122anc  1247  tfisi  4588  tfrcllemsucfn  6356  sbthlemi6  6963  sbthlemi8  6965  div32apd  8773  div13apd  8774  expdivapd  10670  modfsummodlemstep  11467  pcqmul  12305  pcid  12325  pcneg  12326  pc2dvds  12331  pcz  12333  pcaddlem  12340  pcadd  12341  pcmpt2  12344  pcbc  12351  qexpz  12352  expnprm  12353  ennnfonelemg  12406  ssblex  14016
  Copyright terms: Public domain W3C validator