![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl121anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl121anc.5 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl121anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 2, 3 | jca 306 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃)) |
5 | sylXanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl121anc.5 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
7 | 1, 4, 5, 6 | syl3anc 1238 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: syl122anc 1247 tfisi 4588 tfrcllemsucfn 6356 sbthlemi6 6963 sbthlemi8 6965 div32apd 8773 div13apd 8774 expdivapd 10670 modfsummodlemstep 11467 pcqmul 12305 pcid 12325 pcneg 12326 pc2dvds 12331 pcz 12333 pcaddlem 12340 pcadd 12341 pcmpt2 12344 pcbc 12351 qexpz 12352 expnprm 12353 ennnfonelemg 12406 ssblex 14016 |
Copyright terms: Public domain | W3C validator |