ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl121anc GIF version

Theorem syl121anc 1253
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
syl121anc.5 ((𝜓 ∧ (𝜒𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl121anc (𝜑𝜂)

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . . 3 (𝜑𝜒)
3 sylXanc.3 . . 3 (𝜑𝜃)
42, 3jca 306 . 2 (𝜑 → (𝜒𝜃))
5 sylXanc.4 . 2 (𝜑𝜏)
6 syl121anc.5 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ 𝜏) → 𝜂)
71, 4, 5, 6syl3anc 1248 1 (𝜑𝜂)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 981
This theorem is referenced by:  syl122anc  1257  tfisi  4598  tfrcllemsucfn  6368  sbthlemi6  6975  sbthlemi8  6977  div32apd  8785  div13apd  8786  expdivapd  10682  modfsummodlemstep  11479  pcqmul  12317  pcid  12337  pcneg  12338  pc2dvds  12343  pcz  12345  pcaddlem  12352  pcadd  12353  pcmpt2  12356  pcbc  12363  qexpz  12364  expnprm  12365  ennnfonelemg  12418  ssblex  14227
  Copyright terms: Public domain W3C validator