ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl121anc GIF version

Theorem syl121anc 1238
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
syl121anc.5 ((𝜓 ∧ (𝜒𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl121anc (𝜑𝜂)

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . . 3 (𝜑𝜒)
3 sylXanc.3 . . 3 (𝜑𝜃)
42, 3jca 304 . 2 (𝜑 → (𝜒𝜃))
5 sylXanc.4 . 2 (𝜑𝜏)
6 syl121anc.5 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ 𝜏) → 𝜂)
71, 4, 5, 6syl3anc 1233 1 (𝜑𝜂)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  syl122anc  1242  tfisi  4571  tfrcllemsucfn  6332  sbthlemi6  6939  sbthlemi8  6941  div32apd  8731  div13apd  8732  expdivapd  10623  modfsummodlemstep  11420  pcqmul  12257  pcid  12277  pcneg  12278  pc2dvds  12283  pcz  12285  pcaddlem  12292  pcadd  12293  pcmpt2  12296  pcbc  12303  qexpz  12304  expnprm  12305  ennnfonelemg  12358  ssblex  13225
  Copyright terms: Public domain W3C validator