ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl121anc GIF version

Theorem syl121anc 1254
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1 (𝜑𝜓)
sylXanc.2 (𝜑𝜒)
sylXanc.3 (𝜑𝜃)
sylXanc.4 (𝜑𝜏)
syl121anc.5 ((𝜓 ∧ (𝜒𝜃) ∧ 𝜏) → 𝜂)
Assertion
Ref Expression
syl121anc (𝜑𝜂)

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2 (𝜑𝜓)
2 sylXanc.2 . . 3 (𝜑𝜒)
3 sylXanc.3 . . 3 (𝜑𝜃)
42, 3jca 306 . 2 (𝜑 → (𝜒𝜃))
5 sylXanc.4 . 2 (𝜑𝜏)
6 syl121anc.5 . 2 ((𝜓 ∧ (𝜒𝜃) ∧ 𝜏) → 𝜂)
71, 4, 5, 6syl3anc 1249 1 (𝜑𝜂)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syl122anc  1258  tfisi  4624  tfrcllemsucfn  6420  sbthlemi6  7037  sbthlemi8  7039  div32apd  8860  div13apd  8861  expdivapd  10798  modfsummodlemstep  11641  pcqmul  12499  pcid  12520  pcneg  12521  pc2dvds  12526  pcz  12528  pcaddlem  12535  pcadd  12536  pcmpt2  12540  pcbc  12547  qexpz  12548  expnprm  12549  ennnfonelemg  12647  ssblex  14775
  Copyright terms: Public domain W3C validator