ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlemstep GIF version

Theorem modfsummodlemstep 11934
Description: Induction step for modfsummod 11935. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
Hypotheses
Ref Expression
modfsummodlemstep.a (𝜑𝐴 ∈ Fin)
modfsummodlemstep.n (𝜑𝑁 ∈ ℕ)
modfsummodlemstep.b (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)
modfsummodlemstep.z (𝜑 → ¬ 𝑧𝐴)
modfsummodlemstep.h (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Assertion
Ref Expression
modfsummodlemstep (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑧,𝑘
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝐴(𝑧)   𝐵(𝑧,𝑘)   𝑁(𝑧)

Proof of Theorem modfsummodlemstep
StepHypRef Expression
1 modfsummodlemstep.a . . . 4 (𝜑𝐴 ∈ Fin)
2 vex 2782 . . . . 5 𝑧 ∈ V
32a1i 9 . . . 4 (𝜑𝑧 ∈ V)
4 modfsummodlemstep.z . . . . 5 (𝜑 → ¬ 𝑧𝐴)
5 df-nel 2476 . . . . 5 (𝑧𝐴 ↔ ¬ 𝑧𝐴)
64, 5sylibr 134 . . . 4 (𝜑𝑧𝐴)
7 modfsummodlemstep.b . . . 4 (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)
8 fsumsplitsnun 11896 . . . 4 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
91, 3, 6, 7, 8syl121anc 1257 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
109oveq1d 5989 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
11 ralunb 3365 . . . . . . . . 9 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
1211simplbi 274 . . . . . . . 8 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘𝐴 𝐵 ∈ ℤ)
137, 12syl 14 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
14 fsumzcl2 11882 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
151, 13, 14syl2anc 411 . . . . . 6 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
16 zq 9789 . . . . . 6 𝑘𝐴 𝐵 ∈ ℤ → Σ𝑘𝐴 𝐵 ∈ ℚ)
1715, 16syl 14 . . . . 5 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℚ)
18 modfsummodlem1 11933 . . . . . . 7 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
197, 18syl 14 . . . . . 6 (𝜑𝑧 / 𝑘𝐵 ∈ ℤ)
20 zq 9789 . . . . . 6 (𝑧 / 𝑘𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℚ)
2119, 20syl 14 . . . . 5 (𝜑𝑧 / 𝑘𝐵 ∈ ℚ)
22 modfsummodlemstep.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
23 nnq 9796 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
2422, 23syl 14 . . . . 5 (𝜑𝑁 ∈ ℚ)
2522nngt0d 9122 . . . . 5 (𝜑 → 0 < 𝑁)
26 modqaddabs 10551 . . . . 5 (((Σ𝑘𝐴 𝐵 ∈ ℚ ∧ 𝑧 / 𝑘𝐵 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
2717, 21, 24, 25, 26syl22anc 1253 . . . 4 (𝜑 → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
2827eqcomd 2215 . . 3 (𝜑 → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
29 modfsummodlemstep.h . . . . 5 (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
30 modqabs2 10547 . . . . . . 7 ((𝑧 / 𝑘𝐵 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
3121, 24, 25, 30syl3anc 1252 . . . . . 6 (𝜑 → ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
3231eqcomd 2215 . . . . 5 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) = ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁))
3329, 32oveq12d 5992 . . . 4 (𝜑 → ((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)))
3433oveq1d 5989 . . 3 (𝜑 → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
3528, 34eqtrd 2242 . 2 (𝜑 → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
36 zmodcl 10533 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℕ0)
3736nn0zd 9535 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℤ)
3837expcom 116 . . . . . . . 8 (𝑁 ∈ ℕ → (𝐵 ∈ ℤ → (𝐵 mod 𝑁) ∈ ℤ))
3938ralimdv 2578 . . . . . . 7 (𝑁 ∈ ℕ → (∀𝑘𝐴 𝐵 ∈ ℤ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
4022, 13, 39sylc 62 . . . . . 6 (𝜑 → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
41 fsumzcl2 11882 . . . . . 6 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
421, 40, 41syl2anc 411 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
43 zq 9789 . . . . 5 𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ)
4442, 43syl 14 . . . 4 (𝜑 → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ)
4519, 22zmodcld 10534 . . . . 5 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
46 nn0z 9434 . . . . 5 ((𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℤ)
47 zq 9789 . . . . 5 ((𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℤ → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ)
4845, 46, 473syl 17 . . . 4 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ)
49 modqaddabs 10551 . . . 4 (((Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ ∧ (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
5044, 48, 24, 25, 49syl22anc 1253 . . 3 (𝜑 → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
5138ralimdv 2578 . . . . . . 7 (𝑁 ∈ ℕ → (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ))
5222, 7, 51sylc 62 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
53 fsumsplitsnun 11896 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
541, 3, 6, 52, 53syl121anc 1257 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
55 csbov1g 6015 . . . . . . 7 (𝑧 ∈ V → 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
5655elv 2783 . . . . . 6 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁)
5756oveq2i 5985 . . . . 5 𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁))
5854, 57eqtr2di 2259 . . . 4 (𝜑 → (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁))
5958oveq1d 5989 . . 3 (𝜑 → ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
6050, 59eqtrd 2242 . 2 (𝜑 → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
6110, 35, 603eqtrd 2246 1 (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1375  wcel 2180  wnel 2475  wral 2488  Vcvv 2779  csb 3104  cun 3175  {csn 3646   class class class wbr 4062  (class class class)co 5974  Fincfn 6857  0cc0 7967   + caddc 7970   < clt 8149  cn 9078  0cn0 9337  cz 9414  cq 9782   mod cmo 10511  Σcsu 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831
This theorem is referenced by:  modfsummod  11935
  Copyright terms: Public domain W3C validator