ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlemstep GIF version

Theorem modfsummodlemstep 11812
Description: Induction step for modfsummod 11813. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
Hypotheses
Ref Expression
modfsummodlemstep.a (𝜑𝐴 ∈ Fin)
modfsummodlemstep.n (𝜑𝑁 ∈ ℕ)
modfsummodlemstep.b (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)
modfsummodlemstep.z (𝜑 → ¬ 𝑧𝐴)
modfsummodlemstep.h (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Assertion
Ref Expression
modfsummodlemstep (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑧,𝑘
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝐴(𝑧)   𝐵(𝑧,𝑘)   𝑁(𝑧)

Proof of Theorem modfsummodlemstep
StepHypRef Expression
1 modfsummodlemstep.a . . . 4 (𝜑𝐴 ∈ Fin)
2 vex 2776 . . . . 5 𝑧 ∈ V
32a1i 9 . . . 4 (𝜑𝑧 ∈ V)
4 modfsummodlemstep.z . . . . 5 (𝜑 → ¬ 𝑧𝐴)
5 df-nel 2473 . . . . 5 (𝑧𝐴 ↔ ¬ 𝑧𝐴)
64, 5sylibr 134 . . . 4 (𝜑𝑧𝐴)
7 modfsummodlemstep.b . . . 4 (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)
8 fsumsplitsnun 11774 . . . 4 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
91, 3, 6, 7, 8syl121anc 1255 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
109oveq1d 5966 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
11 ralunb 3355 . . . . . . . . 9 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
1211simplbi 274 . . . . . . . 8 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘𝐴 𝐵 ∈ ℤ)
137, 12syl 14 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
14 fsumzcl2 11760 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
151, 13, 14syl2anc 411 . . . . . 6 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
16 zq 9754 . . . . . 6 𝑘𝐴 𝐵 ∈ ℤ → Σ𝑘𝐴 𝐵 ∈ ℚ)
1715, 16syl 14 . . . . 5 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℚ)
18 modfsummodlem1 11811 . . . . . . 7 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
197, 18syl 14 . . . . . 6 (𝜑𝑧 / 𝑘𝐵 ∈ ℤ)
20 zq 9754 . . . . . 6 (𝑧 / 𝑘𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℚ)
2119, 20syl 14 . . . . 5 (𝜑𝑧 / 𝑘𝐵 ∈ ℚ)
22 modfsummodlemstep.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
23 nnq 9761 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
2422, 23syl 14 . . . . 5 (𝜑𝑁 ∈ ℚ)
2522nngt0d 9087 . . . . 5 (𝜑 → 0 < 𝑁)
26 modqaddabs 10514 . . . . 5 (((Σ𝑘𝐴 𝐵 ∈ ℚ ∧ 𝑧 / 𝑘𝐵 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
2717, 21, 24, 25, 26syl22anc 1251 . . . 4 (𝜑 → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
2827eqcomd 2212 . . 3 (𝜑 → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
29 modfsummodlemstep.h . . . . 5 (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
30 modqabs2 10510 . . . . . . 7 ((𝑧 / 𝑘𝐵 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
3121, 24, 25, 30syl3anc 1250 . . . . . 6 (𝜑 → ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
3231eqcomd 2212 . . . . 5 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) = ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁))
3329, 32oveq12d 5969 . . . 4 (𝜑 → ((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)))
3433oveq1d 5966 . . 3 (𝜑 → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
3528, 34eqtrd 2239 . 2 (𝜑 → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
36 zmodcl 10496 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℕ0)
3736nn0zd 9500 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℤ)
3837expcom 116 . . . . . . . 8 (𝑁 ∈ ℕ → (𝐵 ∈ ℤ → (𝐵 mod 𝑁) ∈ ℤ))
3938ralimdv 2575 . . . . . . 7 (𝑁 ∈ ℕ → (∀𝑘𝐴 𝐵 ∈ ℤ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
4022, 13, 39sylc 62 . . . . . 6 (𝜑 → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
41 fsumzcl2 11760 . . . . . 6 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
421, 40, 41syl2anc 411 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
43 zq 9754 . . . . 5 𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ)
4442, 43syl 14 . . . 4 (𝜑 → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ)
4519, 22zmodcld 10497 . . . . 5 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
46 nn0z 9399 . . . . 5 ((𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℤ)
47 zq 9754 . . . . 5 ((𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℤ → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ)
4845, 46, 473syl 17 . . . 4 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ)
49 modqaddabs 10514 . . . 4 (((Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ ∧ (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
5044, 48, 24, 25, 49syl22anc 1251 . . 3 (𝜑 → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
5138ralimdv 2575 . . . . . . 7 (𝑁 ∈ ℕ → (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ))
5222, 7, 51sylc 62 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
53 fsumsplitsnun 11774 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
541, 3, 6, 52, 53syl121anc 1255 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
55 csbov1g 5992 . . . . . . 7 (𝑧 ∈ V → 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
5655elv 2777 . . . . . 6 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁)
5756oveq2i 5962 . . . . 5 𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁))
5854, 57eqtr2di 2256 . . . 4 (𝜑 → (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁))
5958oveq1d 5966 . . 3 (𝜑 → ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
6050, 59eqtrd 2239 . 2 (𝜑 → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
6110, 35, 603eqtrd 2243 1 (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2177  wnel 2472  wral 2485  Vcvv 2773  csb 3094  cun 3165  {csn 3634   class class class wbr 4047  (class class class)co 5951  Fincfn 6834  0cc0 7932   + caddc 7935   < clt 8114  cn 9043  0cn0 9302  cz 9379  cq 9747   mod cmo 10474  Σcsu 11708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-en 6835  df-dom 6836  df-fin 6837  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709
This theorem is referenced by:  modfsummod  11813
  Copyright terms: Public domain W3C validator