ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummodlemstep GIF version

Theorem modfsummodlemstep 11479
Description: Induction step for modfsummod 11480. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
Hypotheses
Ref Expression
modfsummodlemstep.a (𝜑𝐴 ∈ Fin)
modfsummodlemstep.n (𝜑𝑁 ∈ ℕ)
modfsummodlemstep.b (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)
modfsummodlemstep.z (𝜑 → ¬ 𝑧𝐴)
modfsummodlemstep.h (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Assertion
Ref Expression
modfsummodlemstep (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑧,𝑘
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝐴(𝑧)   𝐵(𝑧,𝑘)   𝑁(𝑧)

Proof of Theorem modfsummodlemstep
StepHypRef Expression
1 modfsummodlemstep.a . . . 4 (𝜑𝐴 ∈ Fin)
2 vex 2752 . . . . 5 𝑧 ∈ V
32a1i 9 . . . 4 (𝜑𝑧 ∈ V)
4 modfsummodlemstep.z . . . . 5 (𝜑 → ¬ 𝑧𝐴)
5 df-nel 2453 . . . . 5 (𝑧𝐴 ↔ ¬ 𝑧𝐴)
64, 5sylibr 134 . . . 4 (𝜑𝑧𝐴)
7 modfsummodlemstep.b . . . 4 (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ)
8 fsumsplitsnun 11441 . . . 4 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
91, 3, 6, 7, 8syl121anc 1253 . . 3 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 = (Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵))
109oveq1d 5903 . 2 (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
11 ralunb 3328 . . . . . . . . 9 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
1211simplbi 274 . . . . . . . 8 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘𝐴 𝐵 ∈ ℤ)
137, 12syl 14 . . . . . . 7 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
14 fsumzcl2 11427 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 ∈ ℤ)
151, 13, 14syl2anc 411 . . . . . 6 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
16 zq 9640 . . . . . 6 𝑘𝐴 𝐵 ∈ ℤ → Σ𝑘𝐴 𝐵 ∈ ℚ)
1715, 16syl 14 . . . . 5 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℚ)
18 modfsummodlem1 11478 . . . . . . 7 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℤ)
197, 18syl 14 . . . . . 6 (𝜑𝑧 / 𝑘𝐵 ∈ ℤ)
20 zq 9640 . . . . . 6 (𝑧 / 𝑘𝐵 ∈ ℤ → 𝑧 / 𝑘𝐵 ∈ ℚ)
2119, 20syl 14 . . . . 5 (𝜑𝑧 / 𝑘𝐵 ∈ ℚ)
22 modfsummodlemstep.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
23 nnq 9647 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
2422, 23syl 14 . . . . 5 (𝜑𝑁 ∈ ℚ)
2522nngt0d 8977 . . . . 5 (𝜑 → 0 < 𝑁)
26 modqaddabs 10376 . . . . 5 (((Σ𝑘𝐴 𝐵 ∈ ℚ ∧ 𝑧 / 𝑘𝐵 ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
2717, 21, 24, 25, 26syl22anc 1249 . . . 4 (𝜑 → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁))
2827eqcomd 2193 . . 3 (𝜑 → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
29 modfsummodlemstep.h . . . . 5 (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
30 modqabs2 10372 . . . . . . 7 ((𝑧 / 𝑘𝐵 ∈ ℚ ∧ 𝑁 ∈ ℚ ∧ 0 < 𝑁) → ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
3121, 24, 25, 30syl3anc 1248 . . . . . 6 (𝜑 → ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
3231eqcomd 2193 . . . . 5 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) = ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁))
3329, 32oveq12d 5906 . . . 4 (𝜑 → ((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)))
3433oveq1d 5903 . . 3 (𝜑 → (((Σ𝑘𝐴 𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
3528, 34eqtrd 2220 . 2 (𝜑 → ((Σ𝑘𝐴 𝐵 + 𝑧 / 𝑘𝐵) mod 𝑁) = (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁))
36 zmodcl 10358 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℕ0)
3736nn0zd 9387 . . . . . . . . 9 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐵 mod 𝑁) ∈ ℤ)
3837expcom 116 . . . . . . . 8 (𝑁 ∈ ℕ → (𝐵 ∈ ℤ → (𝐵 mod 𝑁) ∈ ℤ))
3938ralimdv 2555 . . . . . . 7 (𝑁 ∈ ℕ → (∀𝑘𝐴 𝐵 ∈ ℤ → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ))
4022, 13, 39sylc 62 . . . . . 6 (𝜑 → ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
41 fsumzcl2 11427 . . . . . 6 ((𝐴 ∈ Fin ∧ ∀𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
421, 40, 41syl2anc 411 . . . . 5 (𝜑 → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ)
43 zq 9640 . . . . 5 𝑘𝐴 (𝐵 mod 𝑁) ∈ ℤ → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ)
4442, 43syl 14 . . . 4 (𝜑 → Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ)
4519, 22zmodcld 10359 . . . . 5 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
46 nn0z 9287 . . . . 5 ((𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℕ0 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℤ)
47 zq 9640 . . . . 5 ((𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℤ → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ)
4845, 46, 473syl 17 . . . 4 (𝜑 → (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ)
49 modqaddabs 10376 . . . 4 (((Σ𝑘𝐴 (𝐵 mod 𝑁) ∈ ℚ ∧ (𝑧 / 𝑘𝐵 mod 𝑁) ∈ ℚ) ∧ (𝑁 ∈ ℚ ∧ 0 < 𝑁)) → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
5044, 48, 24, 25, 49syl22anc 1249 . . 3 (𝜑 → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁))
5138ralimdv 2555 . . . . . . 7 (𝑁 ∈ ℕ → (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ))
5222, 7, 51sylc 62 . . . . . 6 (𝜑 → ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
53 fsumsplitsnun 11441 . . . . . 6 ((𝐴 ∈ Fin ∧ (𝑧 ∈ V ∧ 𝑧𝐴) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
541, 3, 6, 52, 53syl121anc 1253 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)))
55 csbov1g 5928 . . . . . . 7 (𝑧 ∈ V → 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁))
5655elv 2753 . . . . . 6 𝑧 / 𝑘(𝐵 mod 𝑁) = (𝑧 / 𝑘𝐵 mod 𝑁)
5756oveq2i 5899 . . . . 5 𝑘𝐴 (𝐵 mod 𝑁) + 𝑧 / 𝑘(𝐵 mod 𝑁)) = (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁))
5854, 57eqtr2di 2237 . . . 4 (𝜑 → (Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) = Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁))
5958oveq1d 5903 . . 3 (𝜑 → ((Σ𝑘𝐴 (𝐵 mod 𝑁) + (𝑧 / 𝑘𝐵 mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
6050, 59eqtrd 2220 . 2 (𝜑 → (((Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁) + ((𝑧 / 𝑘𝐵 mod 𝑁) mod 𝑁)) mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
6110, 35, 603eqtrd 2224 1 (𝜑 → (Σ𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1363  wcel 2158  wnel 2452  wral 2465  Vcvv 2749  csb 3069  cun 3139  {csn 3604   class class class wbr 4015  (class class class)co 5888  Fincfn 6754  0cc0 7825   + caddc 7828   < clt 8006  cn 8933  0cn0 9190  cz 9267  cq 9633   mod cmo 10336  Σcsu 11375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-fzo 10157  df-fl 10284  df-mod 10337  df-seqfrec 10460  df-exp 10534  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376
This theorem is referenced by:  modfsummod  11480
  Copyright terms: Public domain W3C validator