Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl112anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl112anc.5 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
syl112anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 304 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | syl112anc.5 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
7 | 1, 2, 5, 6 | syl3anc 1228 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: fvun1 5552 caseinl 7056 caseinr 7057 reapmul1 8493 recrecap 8605 rec11rap 8607 divdivdivap 8609 dmdcanap 8618 ddcanap 8622 rerecclap 8626 div2negap 8631 divap1d 8697 divmulapd 8708 apdivmuld 8709 divmulap2d 8720 divmulap3d 8721 divassapd 8722 div12apd 8723 div23apd 8724 divdirapd 8725 divsubdirapd 8726 div11apd 8727 ltmul12a 8755 ltdiv1 8763 ltrec 8778 lt2msq1 8780 lediv2 8786 lediv23 8788 recp1lt1 8794 qapne 9577 xadd4d 9821 xleaddadd 9823 modqge0 10267 modqlt 10268 modqid 10284 expgt1 10493 nnlesq 10558 expnbnd 10578 facubnd 10658 resqrexlemover 10952 mulcn2 11253 cvgratnnlemnexp 11465 cvgratnnlemmn 11466 eftlub 11631 eflegeo 11642 sin01bnd 11698 cos01bnd 11699 eirraplem 11717 bezoutlemnewy 11929 bezoutlemstep 11930 mulgcd 11949 mulgcddvds 12026 prmind2 12052 oddpwdclemxy 12101 oddpwdclemodd 12104 qnumgt0 12130 pcpremul 12225 fldivp1 12278 pcfaclem 12279 qexpz 12282 prmpwdvds 12285 pockthg 12287 4sqlem10 12317 txdis 12927 txdis1cn 12928 xblm 13067 reeff1oleme 13343 tangtx 13409 cosordlem 13420 logdivlti 13452 apcxp2 13508 lgsdilem 13578 2sqlem3 13603 2sqlem8 13609 apdifflemr 13936 |
Copyright terms: Public domain | W3C validator |