| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl112anc.5 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
| Ref | Expression |
|---|---|
| syl112anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl112anc.5 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
| 7 | 1, 2, 5, 6 | syl3anc 1249 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fvun1 5630 caseinl 7166 caseinr 7167 reapmul1 8639 recrecap 8753 rec11rap 8755 divdivdivap 8757 dmdcanap 8766 ddcanap 8770 rerecclap 8774 div2negap 8779 divap1d 8845 divmulapd 8856 apdivmuld 8857 divmulap2d 8868 divmulap3d 8869 divassapd 8870 div12apd 8871 div23apd 8872 divdirapd 8873 divsubdirapd 8874 div11apd 8875 ltmul12a 8904 ltdiv1 8912 ltrec 8927 lt2msq1 8929 lediv2 8935 lediv23 8937 recp1lt1 8943 qapne 9730 xadd4d 9977 xleaddadd 9979 modqge0 10441 modqlt 10442 modqid 10458 expgt1 10686 nnlesq 10752 expnbnd 10772 facubnd 10854 resqrexlemover 11192 mulcn2 11494 cvgratnnlemnexp 11706 cvgratnnlemmn 11707 eftlub 11872 eflegeo 11883 sin01bnd 11939 cos01bnd 11940 eirraplem 11959 bitsmod 12138 bezoutlemnewy 12188 bezoutlemstep 12189 mulgcd 12208 mulgcddvds 12287 prmind2 12313 oddpwdclemxy 12362 oddpwdclemodd 12365 qnumgt0 12391 pcpremul 12487 fldivp1 12542 pcfaclem 12543 qexpz 12546 prmpwdvds 12549 pockthg 12551 4sqlem10 12581 4sqlem12 12596 4sqlem16 12600 4sqlem17 12601 ablsub4 13519 znrrg 14292 txdis 14597 txdis1cn 14598 xblm 14737 reeff1oleme 15092 tangtx 15158 cosordlem 15169 logdivlti 15201 apcxp2 15259 mersenne 15317 lgsdilem 15352 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgsquadlem1 15402 lgsquadlem2 15403 2sqlem3 15442 2sqlem8 15448 apdifflemr 15778 |
| Copyright terms: Public domain | W3C validator |