| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl112anc.5 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
| Ref | Expression |
|---|---|
| syl112anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl112anc.5 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
| 7 | 1, 2, 5, 6 | syl3anc 1271 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: fvun1 5702 caseinl 7266 caseinr 7267 reapmul1 8750 recrecap 8864 rec11rap 8866 divdivdivap 8868 dmdcanap 8877 ddcanap 8881 rerecclap 8885 div2negap 8890 divap1d 8956 divmulapd 8967 apdivmuld 8968 divmulap2d 8979 divmulap3d 8980 divassapd 8981 div12apd 8982 div23apd 8983 divdirapd 8984 divsubdirapd 8985 div11apd 8986 ltmul12a 9015 ltdiv1 9023 ltrec 9038 lt2msq1 9040 lediv2 9046 lediv23 9048 recp1lt1 9054 qapne 9842 xadd4d 10089 xleaddadd 10091 modqge0 10562 modqlt 10563 modqid 10579 expgt1 10807 nnlesq 10873 expnbnd 10893 facubnd 10975 pfxsuffeqwrdeq 11238 resqrexlemover 11529 mulcn2 11831 cvgratnnlemnexp 12043 cvgratnnlemmn 12044 eftlub 12209 eflegeo 12220 sin01bnd 12276 cos01bnd 12277 eirraplem 12296 bitsmod 12475 bezoutlemnewy 12525 bezoutlemstep 12526 mulgcd 12545 mulgcddvds 12624 prmind2 12650 oddpwdclemxy 12699 oddpwdclemodd 12702 qnumgt0 12728 pcpremul 12824 fldivp1 12879 pcfaclem 12880 qexpz 12883 prmpwdvds 12886 pockthg 12888 4sqlem10 12918 4sqlem12 12933 4sqlem16 12937 4sqlem17 12938 ablsub4 13858 znrrg 14632 txdis 14959 txdis1cn 14960 xblm 15099 reeff1oleme 15454 tangtx 15520 cosordlem 15531 logdivlti 15563 apcxp2 15621 mersenne 15679 lgsdilem 15714 lgseisenlem1 15757 lgseisenlem2 15758 lgseisenlem3 15759 lgsquadlem1 15764 lgsquadlem2 15765 2sqlem3 15804 2sqlem8 15810 apdifflemr 16445 |
| Copyright terms: Public domain | W3C validator |