| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl112anc.5 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
| Ref | Expression |
|---|---|
| syl112anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl112anc.5 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
| 7 | 1, 2, 5, 6 | syl3anc 1252 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: fvun1 5673 caseinl 7226 caseinr 7227 reapmul1 8710 recrecap 8824 rec11rap 8826 divdivdivap 8828 dmdcanap 8837 ddcanap 8841 rerecclap 8845 div2negap 8850 divap1d 8916 divmulapd 8927 apdivmuld 8928 divmulap2d 8939 divmulap3d 8940 divassapd 8941 div12apd 8942 div23apd 8943 divdirapd 8944 divsubdirapd 8945 div11apd 8946 ltmul12a 8975 ltdiv1 8983 ltrec 8998 lt2msq1 9000 lediv2 9006 lediv23 9008 recp1lt1 9014 qapne 9802 xadd4d 10049 xleaddadd 10051 modqge0 10521 modqlt 10522 modqid 10538 expgt1 10766 nnlesq 10832 expnbnd 10852 facubnd 10934 pfxsuffeqwrdeq 11196 resqrexlemover 11487 mulcn2 11789 cvgratnnlemnexp 12001 cvgratnnlemmn 12002 eftlub 12167 eflegeo 12178 sin01bnd 12234 cos01bnd 12235 eirraplem 12254 bitsmod 12433 bezoutlemnewy 12483 bezoutlemstep 12484 mulgcd 12503 mulgcddvds 12582 prmind2 12608 oddpwdclemxy 12657 oddpwdclemodd 12660 qnumgt0 12686 pcpremul 12782 fldivp1 12837 pcfaclem 12838 qexpz 12841 prmpwdvds 12844 pockthg 12846 4sqlem10 12876 4sqlem12 12891 4sqlem16 12895 4sqlem17 12896 ablsub4 13816 znrrg 14589 txdis 14916 txdis1cn 14917 xblm 15056 reeff1oleme 15411 tangtx 15477 cosordlem 15488 logdivlti 15520 apcxp2 15578 mersenne 15636 lgsdilem 15671 lgseisenlem1 15714 lgseisenlem2 15715 lgseisenlem3 15716 lgsquadlem1 15721 lgsquadlem2 15722 2sqlem3 15761 2sqlem8 15767 apdifflemr 16326 |
| Copyright terms: Public domain | W3C validator |