![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl112anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl112anc.5 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
syl112anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | syl112anc.5 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
7 | 1, 2, 5, 6 | syl3anc 1249 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: fvun1 5624 caseinl 7152 caseinr 7153 reapmul1 8616 recrecap 8730 rec11rap 8732 divdivdivap 8734 dmdcanap 8743 ddcanap 8747 rerecclap 8751 div2negap 8756 divap1d 8822 divmulapd 8833 apdivmuld 8834 divmulap2d 8845 divmulap3d 8846 divassapd 8847 div12apd 8848 div23apd 8849 divdirapd 8850 divsubdirapd 8851 div11apd 8852 ltmul12a 8881 ltdiv1 8889 ltrec 8904 lt2msq1 8906 lediv2 8912 lediv23 8914 recp1lt1 8920 qapne 9707 xadd4d 9954 xleaddadd 9956 modqge0 10406 modqlt 10407 modqid 10423 expgt1 10651 nnlesq 10717 expnbnd 10737 facubnd 10819 resqrexlemover 11157 mulcn2 11458 cvgratnnlemnexp 11670 cvgratnnlemmn 11671 eftlub 11836 eflegeo 11847 sin01bnd 11903 cos01bnd 11904 eirraplem 11923 bezoutlemnewy 12136 bezoutlemstep 12137 mulgcd 12156 mulgcddvds 12235 prmind2 12261 oddpwdclemxy 12310 oddpwdclemodd 12313 qnumgt0 12339 pcpremul 12434 fldivp1 12489 pcfaclem 12490 qexpz 12493 prmpwdvds 12496 pockthg 12498 4sqlem10 12528 4sqlem12 12543 4sqlem16 12547 4sqlem17 12548 ablsub4 13386 znrrg 14159 txdis 14456 txdis1cn 14457 xblm 14596 reeff1oleme 14948 tangtx 15014 cosordlem 15025 logdivlti 15057 apcxp2 15113 lgsdilem 15184 lgseisenlem1 15227 lgseisenlem2 15228 lgseisenlem3 15229 lgsquadlem1 15234 lgsquadlem2 15235 2sqlem3 15274 2sqlem8 15280 apdifflemr 15607 |
Copyright terms: Public domain | W3C validator |