| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl112anc.5 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
| Ref | Expression |
|---|---|
| syl112anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl112anc.5 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
| 7 | 1, 2, 5, 6 | syl3anc 1250 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: fvun1 5652 caseinl 7200 caseinr 7201 reapmul1 8675 recrecap 8789 rec11rap 8791 divdivdivap 8793 dmdcanap 8802 ddcanap 8806 rerecclap 8810 div2negap 8815 divap1d 8881 divmulapd 8892 apdivmuld 8893 divmulap2d 8904 divmulap3d 8905 divassapd 8906 div12apd 8907 div23apd 8908 divdirapd 8909 divsubdirapd 8910 div11apd 8911 ltmul12a 8940 ltdiv1 8948 ltrec 8963 lt2msq1 8965 lediv2 8971 lediv23 8973 recp1lt1 8979 qapne 9767 xadd4d 10014 xleaddadd 10016 modqge0 10484 modqlt 10485 modqid 10501 expgt1 10729 nnlesq 10795 expnbnd 10815 facubnd 10897 pfxsuffeqwrdeq 11157 resqrexlemover 11365 mulcn2 11667 cvgratnnlemnexp 11879 cvgratnnlemmn 11880 eftlub 12045 eflegeo 12056 sin01bnd 12112 cos01bnd 12113 eirraplem 12132 bitsmod 12311 bezoutlemnewy 12361 bezoutlemstep 12362 mulgcd 12381 mulgcddvds 12460 prmind2 12486 oddpwdclemxy 12535 oddpwdclemodd 12538 qnumgt0 12564 pcpremul 12660 fldivp1 12715 pcfaclem 12716 qexpz 12719 prmpwdvds 12722 pockthg 12724 4sqlem10 12754 4sqlem12 12769 4sqlem16 12773 4sqlem17 12774 ablsub4 13693 znrrg 14466 txdis 14793 txdis1cn 14794 xblm 14933 reeff1oleme 15288 tangtx 15354 cosordlem 15365 logdivlti 15397 apcxp2 15455 mersenne 15513 lgsdilem 15548 lgseisenlem1 15591 lgseisenlem2 15592 lgseisenlem3 15593 lgsquadlem1 15598 lgsquadlem2 15599 2sqlem3 15638 2sqlem8 15644 apdifflemr 16060 |
| Copyright terms: Public domain | W3C validator |