Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl112anc | GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 | ⊢ (𝜑 → 𝜓) |
sylXanc.2 | ⊢ (𝜑 → 𝜒) |
sylXanc.3 | ⊢ (𝜑 → 𝜃) |
sylXanc.4 | ⊢ (𝜑 → 𝜏) |
syl112anc.5 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
Ref | Expression |
---|---|
syl112anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
6 | syl112anc.5 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
7 | 1, 2, 5, 6 | syl3anc 1238 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: fvun1 5574 caseinl 7080 caseinr 7081 reapmul1 8526 recrecap 8638 rec11rap 8640 divdivdivap 8642 dmdcanap 8651 ddcanap 8655 rerecclap 8659 div2negap 8664 divap1d 8730 divmulapd 8741 apdivmuld 8742 divmulap2d 8753 divmulap3d 8754 divassapd 8755 div12apd 8756 div23apd 8757 divdirapd 8758 divsubdirapd 8759 div11apd 8760 ltmul12a 8788 ltdiv1 8796 ltrec 8811 lt2msq1 8813 lediv2 8819 lediv23 8821 recp1lt1 8827 qapne 9610 xadd4d 9854 xleaddadd 9856 modqge0 10300 modqlt 10301 modqid 10317 expgt1 10526 nnlesq 10591 expnbnd 10611 facubnd 10691 resqrexlemover 10985 mulcn2 11286 cvgratnnlemnexp 11498 cvgratnnlemmn 11499 eftlub 11664 eflegeo 11675 sin01bnd 11731 cos01bnd 11732 eirraplem 11750 bezoutlemnewy 11962 bezoutlemstep 11963 mulgcd 11982 mulgcddvds 12059 prmind2 12085 oddpwdclemxy 12134 oddpwdclemodd 12137 qnumgt0 12163 pcpremul 12258 fldivp1 12311 pcfaclem 12312 qexpz 12315 prmpwdvds 12318 pockthg 12320 4sqlem10 12350 ablsub4 12912 txdis 13328 txdis1cn 13329 xblm 13468 reeff1oleme 13744 tangtx 13810 cosordlem 13821 logdivlti 13853 apcxp2 13909 lgsdilem 13979 2sqlem3 14004 2sqlem8 14010 apdifflemr 14336 |
Copyright terms: Public domain | W3C validator |