| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl112anc | GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 | ⊢ (𝜑 → 𝜓) |
| sylXanc.2 | ⊢ (𝜑 → 𝜒) |
| sylXanc.3 | ⊢ (𝜑 → 𝜃) |
| sylXanc.4 | ⊢ (𝜑 → 𝜏) |
| syl112anc.5 | ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) |
| Ref | Expression |
|---|---|
| syl112anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | sylXanc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | sylXanc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | sylXanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | 3, 4 | jca 306 | . 2 ⊢ (𝜑 → (𝜃 ∧ 𝜏)) |
| 6 | syl112anc.5 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ (𝜃 ∧ 𝜏)) → 𝜂) | |
| 7 | 1, 2, 5, 6 | syl3anc 1249 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fvun1 5630 caseinl 7166 caseinr 7167 reapmul1 8641 recrecap 8755 rec11rap 8757 divdivdivap 8759 dmdcanap 8768 ddcanap 8772 rerecclap 8776 div2negap 8781 divap1d 8847 divmulapd 8858 apdivmuld 8859 divmulap2d 8870 divmulap3d 8871 divassapd 8872 div12apd 8873 div23apd 8874 divdirapd 8875 divsubdirapd 8876 div11apd 8877 ltmul12a 8906 ltdiv1 8914 ltrec 8929 lt2msq1 8931 lediv2 8937 lediv23 8939 recp1lt1 8945 qapne 9732 xadd4d 9979 xleaddadd 9981 modqge0 10443 modqlt 10444 modqid 10460 expgt1 10688 nnlesq 10754 expnbnd 10774 facubnd 10856 resqrexlemover 11194 mulcn2 11496 cvgratnnlemnexp 11708 cvgratnnlemmn 11709 eftlub 11874 eflegeo 11885 sin01bnd 11941 cos01bnd 11942 eirraplem 11961 bitsmod 12140 bezoutlemnewy 12190 bezoutlemstep 12191 mulgcd 12210 mulgcddvds 12289 prmind2 12315 oddpwdclemxy 12364 oddpwdclemodd 12367 qnumgt0 12393 pcpremul 12489 fldivp1 12544 pcfaclem 12545 qexpz 12548 prmpwdvds 12551 pockthg 12553 4sqlem10 12583 4sqlem12 12598 4sqlem16 12602 4sqlem17 12603 ablsub4 13521 znrrg 14294 txdis 14621 txdis1cn 14622 xblm 14761 reeff1oleme 15116 tangtx 15182 cosordlem 15193 logdivlti 15225 apcxp2 15283 mersenne 15341 lgsdilem 15376 lgseisenlem1 15419 lgseisenlem2 15420 lgseisenlem3 15421 lgsquadlem1 15426 lgsquadlem2 15427 2sqlem3 15466 2sqlem8 15472 apdifflemr 15804 |
| Copyright terms: Public domain | W3C validator |