![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl121anc | Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
sylXanc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylXanc.4 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl121anc.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl121anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylXanc.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sylXanc.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | sylXanc.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | jca 306 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | sylXanc.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | syl121anc.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 1, 4, 5, 6 | syl3anc 1238 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: syl122anc 1247 tfisi 4587 tfrcllemsucfn 6354 sbthlemi6 6961 sbthlemi8 6963 div32apd 8771 div13apd 8772 expdivapd 10668 modfsummodlemstep 11465 pcqmul 12303 pcid 12323 pcneg 12324 pc2dvds 12329 pcz 12331 pcaddlem 12338 pcadd 12339 pcmpt2 12342 pcbc 12349 qexpz 12350 expnprm 12351 ennnfonelemg 12404 ssblex 13934 |
Copyright terms: Public domain | W3C validator |