| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl121anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl121anc.5 |
|
| Ref | Expression |
|---|---|
| syl121anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 2, 3 | jca 306 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | syl121anc.5 |
. 2
| |
| 7 | 1, 4, 5, 6 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl122anc 1280 tfisi 4678 tfrcllemsucfn 6497 sbthlemi6 7125 sbthlemi8 7127 div32apd 8957 div13apd 8958 expdivapd 10904 swrdsbslen 11193 modfsummodlemstep 11963 pcqmul 12821 pcid 12842 pcneg 12843 pc2dvds 12848 pcz 12850 pcaddlem 12857 pcadd 12858 pcmpt2 12862 pcbc 12869 qexpz 12870 expnprm 12871 ennnfonelemg 12969 ssblex 15099 |
| Copyright terms: Public domain | W3C validator |