| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl121anc | Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| sylXanc.1 |
|
| sylXanc.2 |
|
| sylXanc.3 |
|
| sylXanc.4 |
|
| syl121anc.5 |
|
| Ref | Expression |
|---|---|
| syl121anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylXanc.1 |
. 2
| |
| 2 | sylXanc.2 |
. . 3
| |
| 3 | sylXanc.3 |
. . 3
| |
| 4 | 2, 3 | jca 306 |
. 2
|
| 5 | sylXanc.4 |
. 2
| |
| 6 | syl121anc.5 |
. 2
| |
| 7 | 1, 4, 5, 6 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl122anc 1259 tfisi 4653 tfrcllemsucfn 6462 sbthlemi6 7090 sbthlemi8 7092 div32apd 8922 div13apd 8923 expdivapd 10869 swrdsbslen 11157 modfsummodlemstep 11883 pcqmul 12741 pcid 12762 pcneg 12763 pc2dvds 12768 pcz 12770 pcaddlem 12777 pcadd 12778 pcmpt2 12782 pcbc 12789 qexpz 12790 expnprm 12791 ennnfonelemg 12889 ssblex 15018 |
| Copyright terms: Public domain | W3C validator |