ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl121anc Unicode version

Theorem syl121anc 1276
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
syl121anc.5  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ta )  ->  et )
Assertion
Ref Expression
syl121anc  |-  ( ph  ->  et )

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . . 3  |-  ( ph  ->  ch )
3 sylXanc.3 . . 3  |-  ( ph  ->  th )
42, 3jca 306 . 2  |-  ( ph  ->  ( ch  /\  th ) )
5 sylXanc.4 . 2  |-  ( ph  ->  ta )
6 syl121anc.5 . 2  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ta )  ->  et )
71, 4, 5, 6syl3anc 1271 1  |-  ( ph  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  syl122anc  1280  tfisi  4678  tfrcllemsucfn  6497  sbthlemi6  7125  sbthlemi8  7127  div32apd  8957  div13apd  8958  expdivapd  10904  swrdsbslen  11193  modfsummodlemstep  11963  pcqmul  12821  pcid  12842  pcneg  12843  pc2dvds  12848  pcz  12850  pcaddlem  12857  pcadd  12858  pcmpt2  12862  pcbc  12869  qexpz  12870  expnprm  12871  ennnfonelemg  12969  ssblex  15099
  Copyright terms: Public domain W3C validator