ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl121anc Unicode version

Theorem syl121anc 1221
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
syl121anc.5  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ta )  ->  et )
Assertion
Ref Expression
syl121anc  |-  ( ph  ->  et )

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . . 3  |-  ( ph  ->  ch )
3 sylXanc.3 . . 3  |-  ( ph  ->  th )
42, 3jca 304 . 2  |-  ( ph  ->  ( ch  /\  th ) )
5 sylXanc.4 . 2  |-  ( ph  ->  ta )
6 syl121anc.5 . 2  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ta )  ->  et )
71, 4, 5, 6syl3anc 1216 1  |-  ( ph  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 964
This theorem is referenced by:  syl122anc  1225  tfisi  4496  tfrcllemsucfn  6243  sbthlemi6  6843  sbthlemi8  6845  div32apd  8567  div13apd  8568  expdivapd  10431  modfsummodlemstep  11219  ennnfonelemg  11905  ssblex  12589
  Copyright terms: Public domain W3C validator