ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl121anc Unicode version

Theorem syl121anc 1254
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
syl121anc.5  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ta )  ->  et )
Assertion
Ref Expression
syl121anc  |-  ( ph  ->  et )

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . . 3  |-  ( ph  ->  ch )
3 sylXanc.3 . . 3  |-  ( ph  ->  th )
42, 3jca 306 . 2  |-  ( ph  ->  ( ch  /\  th ) )
5 sylXanc.4 . 2  |-  ( ph  ->  ta )
6 syl121anc.5 . 2  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ta )  ->  et )
71, 4, 5, 6syl3anc 1249 1  |-  ( ph  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syl122anc  1258  tfisi  4634  tfrcllemsucfn  6438  sbthlemi6  7063  sbthlemi8  7065  div32apd  8886  div13apd  8887  expdivapd  10830  modfsummodlemstep  11739  pcqmul  12597  pcid  12618  pcneg  12619  pc2dvds  12624  pcz  12626  pcaddlem  12633  pcadd  12634  pcmpt2  12638  pcbc  12645  qexpz  12646  expnprm  12647  ennnfonelemg  12745  ssblex  14874
  Copyright terms: Public domain W3C validator