ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl121anc Unicode version

Theorem syl121anc 1254
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
sylXanc.1  |-  ( ph  ->  ps )
sylXanc.2  |-  ( ph  ->  ch )
sylXanc.3  |-  ( ph  ->  th )
sylXanc.4  |-  ( ph  ->  ta )
syl121anc.5  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ta )  ->  et )
Assertion
Ref Expression
syl121anc  |-  ( ph  ->  et )

Proof of Theorem syl121anc
StepHypRef Expression
1 sylXanc.1 . 2  |-  ( ph  ->  ps )
2 sylXanc.2 . . 3  |-  ( ph  ->  ch )
3 sylXanc.3 . . 3  |-  ( ph  ->  th )
42, 3jca 306 . 2  |-  ( ph  ->  ( ch  /\  th ) )
5 sylXanc.4 . 2  |-  ( ph  ->  ta )
6 syl121anc.5 . 2  |-  ( ( ps  /\  ( ch 
/\  th )  /\  ta )  ->  et )
71, 4, 5, 6syl3anc 1249 1  |-  ( ph  ->  et )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syl122anc  1258  tfisi  4624  tfrcllemsucfn  6420  sbthlemi6  7037  sbthlemi8  7039  div32apd  8858  div13apd  8859  expdivapd  10796  modfsummodlemstep  11639  pcqmul  12497  pcid  12518  pcneg  12519  pc2dvds  12524  pcz  12526  pcaddlem  12533  pcadd  12534  pcmpt2  12538  pcbc  12545  qexpz  12546  expnprm  12547  ennnfonelemg  12645  ssblex  14751
  Copyright terms: Public domain W3C validator