ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi8 GIF version

Theorem sbthlemi8 7025
Description: Lemma for isbth 7028. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi8 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi8
StepHypRef Expression
1 funres11 5327 . . . 4 (Fun 𝑓 → Fun (𝑓 𝐷))
21ad2antlr 489 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun (𝑓 𝐷))
3 funcnvcnv 5314 . . . . . 6 (Fun 𝑔 → Fun 𝑔)
4 funres11 5327 . . . . . 6 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
53, 4syl 14 . . . . 5 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
65ad2antrr 488 . . . 4 (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) → Fun (𝑔 ↾ (𝐴 𝐷)))
76ad2antrl 490 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun (𝑔 ↾ (𝐴 𝐷)))
8 simpll 527 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → EXMID)
9 simprll 537 . . . . 5 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
109simprd 114 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝑔 = 𝐵)
11 simprlr 538 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝑔𝐴)
12 simprr 531 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝑔)
13 df-ima 4673 . . . . . . 7 (𝑓 𝐷) = ran (𝑓 𝐷)
14 df-rn 4671 . . . . . . 7 ran (𝑓 𝐷) = dom (𝑓 𝐷)
1513, 14eqtr2i 2215 . . . . . 6 dom (𝑓 𝐷) = (𝑓 𝐷)
16 df-ima 4673 . . . . . . . 8 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
17 df-rn 4671 . . . . . . . 8 ran (𝑔 ↾ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
1816, 17eqtri 2214 . . . . . . 7 (𝑔 “ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
19 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
20 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
2119, 20sbthlemi4 7021 . . . . . . 7 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
2218, 21eqtr3id 2240 . . . . . 6 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
23 ineq12 3356 . . . . . 6 ((dom (𝑓 𝐷) = (𝑓 𝐷) ∧ dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷))) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
2415, 22, 23sylancr 414 . . . . 5 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
25 disjdif 3520 . . . . 5 ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))) = ∅
2624, 25eqtrdi 2242 . . . 4 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
278, 10, 11, 12, 26syl121anc 1254 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
28 funun 5299 . . 3 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
292, 7, 27, 28syl21anc 1248 . 2 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
30 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3130cnveqi 4838 . . . 4 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
32 cnvun 5072 . . . 4 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3331, 32eqtri 2214 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3433funeqi 5276 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
3529, 34sylibr 134 1 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  {cab 2179  Vcvv 2760  cdif 3151  cun 3152  cin 3153  wss 3154  c0 3447   cuni 3836  EXMIDwem 4224  ccnv 4659  dom cdm 4660  ran crn 4661  cres 4662  cima 4663  Fun wfun 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-exmid 4225  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257
This theorem is referenced by:  sbthlemi9  7026
  Copyright terms: Public domain W3C validator