ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi8 GIF version

Theorem sbthlemi8 6929
Description: Lemma for isbth 6932. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi8 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi8
StepHypRef Expression
1 funres11 5260 . . . 4 (Fun 𝑓 → Fun (𝑓 𝐷))
21ad2antlr 481 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun (𝑓 𝐷))
3 funcnvcnv 5247 . . . . . 6 (Fun 𝑔 → Fun 𝑔)
4 funres11 5260 . . . . . 6 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
53, 4syl 14 . . . . 5 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
65ad2antrr 480 . . . 4 (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) → Fun (𝑔 ↾ (𝐴 𝐷)))
76ad2antrl 482 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun (𝑔 ↾ (𝐴 𝐷)))
8 simpll 519 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → EXMID)
9 simprll 527 . . . . 5 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
109simprd 113 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝑔 = 𝐵)
11 simprlr 528 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝑔𝐴)
12 simprr 522 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝑔)
13 df-ima 4617 . . . . . . 7 (𝑓 𝐷) = ran (𝑓 𝐷)
14 df-rn 4615 . . . . . . 7 ran (𝑓 𝐷) = dom (𝑓 𝐷)
1513, 14eqtr2i 2187 . . . . . 6 dom (𝑓 𝐷) = (𝑓 𝐷)
16 df-ima 4617 . . . . . . . 8 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
17 df-rn 4615 . . . . . . . 8 ran (𝑔 ↾ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
1816, 17eqtri 2186 . . . . . . 7 (𝑔 “ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
19 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
20 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
2119, 20sbthlemi4 6925 . . . . . . 7 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
2218, 21eqtr3id 2213 . . . . . 6 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
23 ineq12 3318 . . . . . 6 ((dom (𝑓 𝐷) = (𝑓 𝐷) ∧ dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷))) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
2415, 22, 23sylancr 411 . . . . 5 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
25 disjdif 3481 . . . . 5 ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))) = ∅
2624, 25eqtrdi 2215 . . . 4 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
278, 10, 11, 12, 26syl121anc 1233 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
28 funun 5232 . . 3 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
292, 7, 27, 28syl21anc 1227 . 2 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
30 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3130cnveqi 4779 . . . 4 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
32 cnvun 5009 . . . 4 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3331, 32eqtri 2186 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3433funeqi 5209 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
3529, 34sylibr 133 1 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  {cab 2151  Vcvv 2726  cdif 3113  cun 3114  cin 3115  wss 3116  c0 3409   cuni 3789  EXMIDwem 4173  ccnv 4603  dom cdm 4604  ran crn 4605  cres 4606  cima 4607  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-exmid 4174  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  sbthlemi9  6930
  Copyright terms: Public domain W3C validator