ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi8 GIF version

Theorem sbthlemi8 6911
Description: Lemma for isbth 6914. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi8 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi8
StepHypRef Expression
1 funres11 5245 . . . 4 (Fun 𝑓 → Fun (𝑓 𝐷))
21ad2antlr 481 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun (𝑓 𝐷))
3 funcnvcnv 5232 . . . . . 6 (Fun 𝑔 → Fun 𝑔)
4 funres11 5245 . . . . . 6 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
53, 4syl 14 . . . . 5 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
65ad2antrr 480 . . . 4 (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) → Fun (𝑔 ↾ (𝐴 𝐷)))
76ad2antrl 482 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun (𝑔 ↾ (𝐴 𝐷)))
8 simpll 519 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → EXMID)
9 simprll 527 . . . . 5 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (Fun 𝑔 ∧ dom 𝑔 = 𝐵))
109simprd 113 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝑔 = 𝐵)
11 simprlr 528 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝑔𝐴)
12 simprr 522 . . . 4 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝑔)
13 df-ima 4602 . . . . . . 7 (𝑓 𝐷) = ran (𝑓 𝐷)
14 df-rn 4600 . . . . . . 7 ran (𝑓 𝐷) = dom (𝑓 𝐷)
1513, 14eqtr2i 2179 . . . . . 6 dom (𝑓 𝐷) = (𝑓 𝐷)
16 df-ima 4602 . . . . . . . 8 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
17 df-rn 4600 . . . . . . . 8 ran (𝑔 ↾ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
1816, 17eqtri 2178 . . . . . . 7 (𝑔 “ (𝐴 𝐷)) = dom (𝑔 ↾ (𝐴 𝐷))
19 sbthlem.1 . . . . . . . 8 𝐴 ∈ V
20 sbthlem.2 . . . . . . . 8 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
2119, 20sbthlemi4 6907 . . . . . . 7 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
2218, 21eqtr3id 2204 . . . . . 6 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
23 ineq12 3304 . . . . . 6 ((dom (𝑓 𝐷) = (𝑓 𝐷) ∧ dom (𝑔 ↾ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷))) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
2415, 22, 23sylancr 411 . . . . 5 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))))
25 disjdif 3467 . . . . 5 ((𝑓 𝐷) ∩ (𝐵 ∖ (𝑓 𝐷))) = ∅
2624, 25eqtrdi 2206 . . . 4 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
278, 10, 11, 12, 26syl121anc 1225 . . 3 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
28 funun 5217 . . 3 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
292, 7, 27, 28syl21anc 1219 . 2 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
30 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3130cnveqi 4764 . . . 4 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
32 cnvun 4994 . . . 4 ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3331, 32eqtri 2178 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3433funeqi 5194 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
3529, 34sylibr 133 1 (((EXMID ∧ Fun 𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  {cab 2143  Vcvv 2712  cdif 3099  cun 3100  cin 3101  wss 3102  c0 3395   cuni 3774  EXMIDwem 4158  ccnv 4588  dom cdm 4589  ran crn 4590  cres 4591  cima 4592  Fun wfun 5167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4029  df-exmid 4159  df-id 4256  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-fun 5175
This theorem is referenced by:  sbthlemi9  6912
  Copyright terms: Public domain W3C validator