Proof of Theorem sbthlemi8
| Step | Hyp | Ref
 | Expression | 
| 1 |   | funres11 5330 | 
. . . 4
⊢ (Fun
◡𝑓 → Fun ◡(𝑓 ↾ ∪ 𝐷)) | 
| 2 | 1 | ad2antlr 489 | 
. . 3
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡(𝑓 ↾ ∪ 𝐷)) | 
| 3 |   | funcnvcnv 5317 | 
. . . . . 6
⊢ (Fun
𝑔 → Fun ◡◡𝑔) | 
| 4 |   | funres11 5330 | 
. . . . . 6
⊢ (Fun
◡◡𝑔 → Fun ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | 
| 5 | 3, 4 | syl 14 | 
. . . . 5
⊢ (Fun
𝑔 → Fun ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | 
| 6 | 5 | ad2antrr 488 | 
. . . 4
⊢ (((Fun
𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) → Fun ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | 
| 7 | 6 | ad2antrl 490 | 
. . 3
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | 
| 8 |   | simpll 527 | 
. . . 4
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) →
EXMID) | 
| 9 |   | simprll 537 | 
. . . . 5
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → (Fun 𝑔 ∧ dom 𝑔 = 𝐵)) | 
| 10 | 9 | simprd 114 | 
. . . 4
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → dom 𝑔 = 𝐵) | 
| 11 |   | simprlr 538 | 
. . . 4
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝑔 ⊆ 𝐴) | 
| 12 |   | simprr 531 | 
. . . 4
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡𝑔) | 
| 13 |   | df-ima 4676 | 
. . . . . . 7
⊢ (𝑓 “ ∪ 𝐷) =
ran (𝑓 ↾ ∪ 𝐷) | 
| 14 |   | df-rn 4674 | 
. . . . . . 7
⊢ ran
(𝑓 ↾ ∪ 𝐷) =
dom ◡(𝑓 ↾ ∪ 𝐷) | 
| 15 | 13, 14 | eqtr2i 2218 | 
. . . . . 6
⊢ dom ◡(𝑓 ↾ ∪ 𝐷) = (𝑓 “ ∪ 𝐷) | 
| 16 |   | df-ima 4676 | 
. . . . . . . 8
⊢ (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) | 
| 17 |   | df-rn 4674 | 
. . . . . . . 8
⊢ ran
(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) = dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) | 
| 18 | 16, 17 | eqtri 2217 | 
. . . . . . 7
⊢ (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) | 
| 19 |   | sbthlem.1 | 
. . . . . . . 8
⊢ 𝐴 ∈ V | 
| 20 |   | sbthlem.2 | 
. . . . . . . 8
⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} | 
| 21 | 19, 20 | sbthlemi4 7026 | 
. . . . . . 7
⊢
((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) | 
| 22 | 18, 21 | eqtr3id 2243 | 
. . . . . 6
⊢
((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) | 
| 23 |   | ineq12 3359 | 
. . . . . 6
⊢ ((dom
◡(𝑓 ↾ ∪ 𝐷) = (𝑓 “ ∪ 𝐷) ∧ dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) → (dom ◡(𝑓 ↾ ∪ 𝐷) ∩ dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = ((𝑓 “ ∪ 𝐷) ∩ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | 
| 24 | 15, 22, 23 | sylancr 414 | 
. . . . 5
⊢
((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (dom ◡(𝑓 ↾ ∪ 𝐷) ∩ dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = ((𝑓 “ ∪ 𝐷) ∩ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) | 
| 25 |   | disjdif 3523 | 
. . . . 5
⊢ ((𝑓 “ ∪ 𝐷)
∩ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))
= ∅ | 
| 26 | 24, 25 | eqtrdi 2245 | 
. . . 4
⊢
((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (dom ◡(𝑓 ↾ ∪ 𝐷) ∩ dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = ∅) | 
| 27 | 8, 10, 11, 12, 26 | syl121anc 1254 | 
. . 3
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → (dom ◡(𝑓 ↾ ∪ 𝐷) ∩ dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = ∅) | 
| 28 |   | funun 5302 | 
. . 3
⊢ (((Fun
◡(𝑓 ↾ ∪ 𝐷) ∧ Fun ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) ∧ (dom ◡(𝑓 ↾ ∪ 𝐷) ∩ dom ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = ∅) → Fun (◡(𝑓 ↾ ∪ 𝐷) ∪ ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)))) | 
| 29 | 2, 7, 27, 28 | syl21anc 1248 | 
. 2
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun (◡(𝑓 ↾ ∪ 𝐷) ∪ ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)))) | 
| 30 |   | sbthlem.3 | 
. . . . 5
⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | 
| 31 | 30 | cnveqi 4841 | 
. . . 4
⊢ ◡𝐻 = ◡((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | 
| 32 |   | cnvun 5075 | 
. . . 4
⊢ ◡((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (◡(𝑓 ↾ ∪ 𝐷) ∪ ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | 
| 33 | 31, 32 | eqtri 2217 | 
. . 3
⊢ ◡𝐻 = (◡(𝑓 ↾ ∪ 𝐷) ∪ ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) | 
| 34 | 33 | funeqi 5279 | 
. 2
⊢ (Fun
◡𝐻 ↔ Fun (◡(𝑓 ↾ ∪ 𝐷) ∪ ◡(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)))) | 
| 35 | 29, 34 | sylibr 134 | 
1
⊢
(((EXMID ∧ Fun ◡𝑓) ∧ (((Fun 𝑔 ∧ dom 𝑔 = 𝐵) ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡𝐻) |