ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi6 GIF version

Theorem sbthlemi6 6843
Description: Lemma for isbth 6848. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi6 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → EXMID)
2 simprll 526 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝑔 = 𝐵)
3 simprlr 527 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝑔𝐴)
4 simprr 521 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝑔)
5 df-ima 4547 . . . . . 6 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
6 sbthlem.1 . . . . . . 7 𝐴 ∈ V
7 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
86, 7sbthlemi4 6841 . . . . . 6 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
95, 8syl5reqr 2185 . . . . 5 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
109uneq2d 3225 . . . 4 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷))))
11 rnun 4942 . . . . 5 ran ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (ran (𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
12 sbthlem.3 . . . . . 6 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
1312rneqi 4762 . . . . 5 ran 𝐻 = ran ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
14 df-ima 4547 . . . . . 6 (𝑓 𝐷) = ran (𝑓 𝐷)
1514uneq1i 3221 . . . . 5 ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷))) = (ran (𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
1611, 13, 153eqtr4i 2168 . . . 4 ran 𝐻 = ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
1710, 16syl6reqr 2189 . . 3 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → ran 𝐻 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
181, 2, 3, 4, 17syl121anc 1221 . 2 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
19 imassrn 4887 . . . . . . 7 (𝑓 𝐷) ⊆ ran 𝑓
20 sstr2 3099 . . . . . . 7 ((𝑓 𝐷) ⊆ ran 𝑓 → (ran 𝑓𝐵 → (𝑓 𝐷) ⊆ 𝐵))
2119, 20ax-mp 5 . . . . . 6 (ran 𝑓𝐵 → (𝑓 𝐷) ⊆ 𝐵)
2221adantl 275 . . . . 5 ((EXMID ∧ ran 𝑓𝐵) → (𝑓 𝐷) ⊆ 𝐵)
23 exmidexmid 4115 . . . . . . . . 9 (EXMIDDECID 𝑦 ∈ (𝑓 𝐷))
2423ralrimivw 2504 . . . . . . . 8 (EXMID → ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷))
2524biantrud 302 . . . . . . 7 (EXMID → ((𝑓 𝐷) ⊆ 𝐵 ↔ ((𝑓 𝐷) ⊆ 𝐵 ∧ ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷))))
26 undifdcss 6804 . . . . . . 7 (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ ((𝑓 𝐷) ⊆ 𝐵 ∧ ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷)))
2725, 26syl6rbbr 198 . . . . . 6 (EXMID → (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ (𝑓 𝐷) ⊆ 𝐵))
2827adantr 274 . . . . 5 ((EXMID ∧ ran 𝑓𝐵) → (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ (𝑓 𝐷) ⊆ 𝐵))
2922, 28mpbird 166 . . . 4 ((EXMID ∧ ran 𝑓𝐵) → 𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
3029eqcomd 2143 . . 3 ((EXMID ∧ ran 𝑓𝐵) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = 𝐵)
3130adantr 274 . 2 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = 𝐵)
3218, 31eqtrd 2170 1 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  {cab 2123  wral 2414  Vcvv 2681  cdif 3063  cun 3064  wss 3066   cuni 3731  EXMIDwem 4113  ccnv 4533  dom cdm 4534  ran crn 4535  cres 4536  cima 4537  Fun wfun 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-exmid 4114  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-fun 5120
This theorem is referenced by:  sbthlemi9  6846
  Copyright terms: Public domain W3C validator