Step | Hyp | Ref
| Expression |
1 | | simpll 524 |
. . 3
⊢
(((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) →
EXMID) |
2 | | simprll 532 |
. . 3
⊢
(((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → dom 𝑔 = 𝐵) |
3 | | simprlr 533 |
. . 3
⊢
(((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝑔 ⊆ 𝐴) |
4 | | simprr 527 |
. . 3
⊢
(((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → Fun ◡𝑔) |
5 | | rnun 5019 |
. . . . 5
⊢ ran
((𝑓 ↾ ∪ 𝐷)
∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (ran (𝑓 ↾ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
6 | | sbthlem.3 |
. . . . . 6
⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
7 | 6 | rneqi 4839 |
. . . . 5
⊢ ran 𝐻 = ran ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
8 | | df-ima 4624 |
. . . . . 6
⊢ (𝑓 “ ∪ 𝐷) =
ran (𝑓 ↾ ∪ 𝐷) |
9 | 8 | uneq1i 3277 |
. . . . 5
⊢ ((𝑓 “ ∪ 𝐷)
∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (ran (𝑓 ↾ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
10 | 5, 7, 9 | 3eqtr4i 2201 |
. . . 4
⊢ ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
11 | | sbthlem.1 |
. . . . . . 7
⊢ 𝐴 ∈ V |
12 | | sbthlem.2 |
. . . . . . 7
⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
13 | 11, 12 | sbthlemi4 6937 |
. . . . . 6
⊢
((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = (𝐵 ∖ (𝑓 “ ∪ 𝐷))) |
14 | | df-ima 4624 |
. . . . . 6
⊢ (◡𝑔 “ (𝐴 ∖ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) |
15 | 13, 14 | eqtr3di 2218 |
. . . . 5
⊢
((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → (𝐵 ∖ (𝑓 “ ∪ 𝐷)) = ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
16 | 15 | uneq2d 3281 |
. . . 4
⊢
((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = ((𝑓 “ ∪ 𝐷) ∪ ran (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)))) |
17 | 10, 16 | eqtr4id 2222 |
. . 3
⊢
((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔) → ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
18 | 1, 2, 3, 4, 17 | syl121anc 1238 |
. 2
⊢
(((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
19 | | imassrn 4964 |
. . . . . . 7
⊢ (𝑓 “ ∪ 𝐷)
⊆ ran 𝑓 |
20 | | sstr2 3154 |
. . . . . . 7
⊢ ((𝑓 “ ∪ 𝐷)
⊆ ran 𝑓 → (ran
𝑓 ⊆ 𝐵 → (𝑓 “ ∪ 𝐷) ⊆ 𝐵)) |
21 | 19, 20 | ax-mp 5 |
. . . . . 6
⊢ (ran
𝑓 ⊆ 𝐵 → (𝑓 “ ∪ 𝐷) ⊆ 𝐵) |
22 | 21 | adantl 275 |
. . . . 5
⊢
((EXMID ∧ ran 𝑓 ⊆ 𝐵) → (𝑓 “ ∪ 𝐷) ⊆ 𝐵) |
23 | | undifdcss 6900 |
. . . . . . 7
⊢ (𝐵 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ↔ ((𝑓 “ ∪ 𝐷) ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝐵 DECID 𝑦 ∈ (𝑓 “ ∪ 𝐷))) |
24 | | exmidexmid 4182 |
. . . . . . . . 9
⊢
(EXMID → DECID 𝑦 ∈ (𝑓 “ ∪ 𝐷)) |
25 | 24 | ralrimivw 2544 |
. . . . . . . 8
⊢
(EXMID → ∀𝑦 ∈ 𝐵 DECID 𝑦 ∈ (𝑓 “ ∪ 𝐷)) |
26 | 25 | biantrud 302 |
. . . . . . 7
⊢
(EXMID → ((𝑓 “ ∪ 𝐷) ⊆ 𝐵 ↔ ((𝑓 “ ∪ 𝐷) ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝐵 DECID 𝑦 ∈ (𝑓 “ ∪ 𝐷)))) |
27 | 23, 26 | bitr4id 198 |
. . . . . 6
⊢
(EXMID → (𝐵 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ↔ (𝑓 “ ∪ 𝐷) ⊆ 𝐵)) |
28 | 27 | adantr 274 |
. . . . 5
⊢
((EXMID ∧ ran 𝑓 ⊆ 𝐵) → (𝐵 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ↔ (𝑓 “ ∪ 𝐷) ⊆ 𝐵)) |
29 | 22, 28 | mpbird 166 |
. . . 4
⊢
((EXMID ∧ ran 𝑓 ⊆ 𝐵) → 𝐵 = ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
30 | 29 | eqcomd 2176 |
. . 3
⊢
((EXMID ∧ ran 𝑓 ⊆ 𝐵) → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = 𝐵) |
31 | 30 | adantr 274 |
. 2
⊢
(((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ((𝑓 “ ∪ 𝐷) ∪ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = 𝐵) |
32 | 18, 31 | eqtrd 2203 |
1
⊢
(((EXMID ∧ ran 𝑓 ⊆ 𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔 ⊆ 𝐴) ∧ Fun ◡𝑔)) → ran 𝐻 = 𝐵) |