ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi6 GIF version

Theorem sbthlemi6 7125
Description: Lemma for isbth 7130. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi6 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → EXMID)
2 simprll 537 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝑔 = 𝐵)
3 simprlr 538 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝑔𝐴)
4 simprr 531 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝑔)
5 rnun 5136 . . . . 5 ran ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (ran (𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
6 sbthlem.3 . . . . . 6 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
76rneqi 4951 . . . . 5 ran 𝐻 = ran ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
8 df-ima 4731 . . . . . 6 (𝑓 𝐷) = ran (𝑓 𝐷)
98uneq1i 3354 . . . . 5 ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷))) = (ran (𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
105, 7, 93eqtr4i 2260 . . . 4 ran 𝐻 = ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
11 sbthlem.1 . . . . . . 7 𝐴 ∈ V
12 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1311, 12sbthlemi4 7123 . . . . . 6 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
14 df-ima 4731 . . . . . 6 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
1513, 14eqtr3di 2277 . . . . 5 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
1615uneq2d 3358 . . . 4 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷))))
1710, 16eqtr4id 2281 . . 3 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → ran 𝐻 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
181, 2, 3, 4, 17syl121anc 1276 . 2 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
19 imassrn 5078 . . . . . . 7 (𝑓 𝐷) ⊆ ran 𝑓
20 sstr2 3231 . . . . . . 7 ((𝑓 𝐷) ⊆ ran 𝑓 → (ran 𝑓𝐵 → (𝑓 𝐷) ⊆ 𝐵))
2119, 20ax-mp 5 . . . . . 6 (ran 𝑓𝐵 → (𝑓 𝐷) ⊆ 𝐵)
2221adantl 277 . . . . 5 ((EXMID ∧ ran 𝑓𝐵) → (𝑓 𝐷) ⊆ 𝐵)
23 undifdcss 7081 . . . . . . 7 (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ ((𝑓 𝐷) ⊆ 𝐵 ∧ ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷)))
24 exmidexmid 4279 . . . . . . . . 9 (EXMIDDECID 𝑦 ∈ (𝑓 𝐷))
2524ralrimivw 2604 . . . . . . . 8 (EXMID → ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷))
2625biantrud 304 . . . . . . 7 (EXMID → ((𝑓 𝐷) ⊆ 𝐵 ↔ ((𝑓 𝐷) ⊆ 𝐵 ∧ ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷))))
2723, 26bitr4id 199 . . . . . 6 (EXMID → (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ (𝑓 𝐷) ⊆ 𝐵))
2827adantr 276 . . . . 5 ((EXMID ∧ ran 𝑓𝐵) → (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ (𝑓 𝐷) ⊆ 𝐵))
2922, 28mpbird 167 . . . 4 ((EXMID ∧ ran 𝑓𝐵) → 𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
3029eqcomd 2235 . . 3 ((EXMID ∧ ran 𝑓𝐵) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = 𝐵)
3130adantr 276 . 2 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = 𝐵)
3218, 31eqtrd 2262 1 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  {cab 2215  wral 2508  Vcvv 2799  cdif 3194  cun 3195  wss 3197   cuni 3887  EXMIDwem 4277  ccnv 4717  dom cdm 4718  ran crn 4719  cres 4720  cima 4721  Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-exmid 4278  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319
This theorem is referenced by:  sbthlemi9  7128
  Copyright terms: Public domain W3C validator