ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi6 GIF version

Theorem sbthlemi6 7079
Description: Lemma for isbth 7084. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi6 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi6
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → EXMID)
2 simprll 537 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → dom 𝑔 = 𝐵)
3 simprlr 538 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝑔𝐴)
4 simprr 531 . . 3 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → Fun 𝑔)
5 rnun 5100 . . . . 5 ran ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (ran (𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
6 sbthlem.3 . . . . . 6 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
76rneqi 4915 . . . . 5 ran 𝐻 = ran ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
8 df-ima 4696 . . . . . 6 (𝑓 𝐷) = ran (𝑓 𝐷)
98uneq1i 3327 . . . . 5 ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷))) = (ran (𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
105, 7, 93eqtr4i 2237 . . . 4 ran 𝐻 = ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷)))
11 sbthlem.1 . . . . . . 7 𝐴 ∈ V
12 sbthlem.2 . . . . . . 7 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1311, 12sbthlemi4 7077 . . . . . 6 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝑔 “ (𝐴 𝐷)) = (𝐵 ∖ (𝑓 𝐷)))
14 df-ima 4696 . . . . . 6 (𝑔 “ (𝐴 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷))
1513, 14eqtr3di 2254 . . . . 5 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → (𝐵 ∖ (𝑓 𝐷)) = ran (𝑔 ↾ (𝐴 𝐷)))
1615uneq2d 3331 . . . 4 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = ((𝑓 𝐷) ∪ ran (𝑔 ↾ (𝐴 𝐷))))
1710, 16eqtr4id 2258 . . 3 ((EXMID ∧ (dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔) → ran 𝐻 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
181, 2, 3, 4, 17syl121anc 1255 . 2 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
19 imassrn 5042 . . . . . . 7 (𝑓 𝐷) ⊆ ran 𝑓
20 sstr2 3204 . . . . . . 7 ((𝑓 𝐷) ⊆ ran 𝑓 → (ran 𝑓𝐵 → (𝑓 𝐷) ⊆ 𝐵))
2119, 20ax-mp 5 . . . . . 6 (ran 𝑓𝐵 → (𝑓 𝐷) ⊆ 𝐵)
2221adantl 277 . . . . 5 ((EXMID ∧ ran 𝑓𝐵) → (𝑓 𝐷) ⊆ 𝐵)
23 undifdcss 7035 . . . . . . 7 (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ ((𝑓 𝐷) ⊆ 𝐵 ∧ ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷)))
24 exmidexmid 4248 . . . . . . . . 9 (EXMIDDECID 𝑦 ∈ (𝑓 𝐷))
2524ralrimivw 2581 . . . . . . . 8 (EXMID → ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷))
2625biantrud 304 . . . . . . 7 (EXMID → ((𝑓 𝐷) ⊆ 𝐵 ↔ ((𝑓 𝐷) ⊆ 𝐵 ∧ ∀𝑦𝐵 DECID 𝑦 ∈ (𝑓 𝐷))))
2723, 26bitr4id 199 . . . . . 6 (EXMID → (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ (𝑓 𝐷) ⊆ 𝐵))
2827adantr 276 . . . . 5 ((EXMID ∧ ran 𝑓𝐵) → (𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) ↔ (𝑓 𝐷) ⊆ 𝐵))
2922, 28mpbird 167 . . . 4 ((EXMID ∧ ran 𝑓𝐵) → 𝐵 = ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))))
3029eqcomd 2212 . . 3 ((EXMID ∧ ran 𝑓𝐵) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = 𝐵)
3130adantr 276 . 2 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ((𝑓 𝐷) ∪ (𝐵 ∖ (𝑓 𝐷))) = 𝐵)
3218, 31eqtrd 2239 1 (((EXMID ∧ ran 𝑓𝐵) ∧ ((dom 𝑔 = 𝐵 ∧ ran 𝑔𝐴) ∧ Fun 𝑔)) → ran 𝐻 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  {cab 2192  wral 2485  Vcvv 2773  cdif 3167  cun 3168  wss 3170   cuni 3856  EXMIDwem 4246  ccnv 4682  dom cdm 4683  ran crn 4684  cres 4685  cima 4686  Fun wfun 5274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-exmid 4247  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-fun 5282
This theorem is referenced by:  sbthlemi9  7082
  Copyright terms: Public domain W3C validator