Proof of Theorem ssblex
Step | Hyp | Ref
| Expression |
1 | | simprl 521 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ 𝑅 ∈
ℝ+) |
2 | 1 | rphalfcld 9645 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ (𝑅 / 2) ∈
ℝ+) |
3 | | simprr 522 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ 𝑆 ∈
ℝ+) |
4 | | rpmincl 11179 |
. . 3
⊢ (((𝑅 / 2) ∈ ℝ+
∧ 𝑆 ∈
ℝ+) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈
ℝ+) |
5 | 2, 3, 4 | syl2anc 409 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈
ℝ+) |
6 | 5 | rpred 9632 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈
ℝ) |
7 | 2 | rpred 9632 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ (𝑅 / 2) ∈
ℝ) |
8 | 1 | rpred 9632 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ 𝑅 ∈
ℝ) |
9 | 3 | rpred 9632 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ 𝑆 ∈
ℝ) |
10 | | min1inf 11173 |
. . . 4
⊢ (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) →
inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ (𝑅 / 2)) |
11 | 7, 9, 10 | syl2anc 409 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ (𝑅 / 2)) |
12 | 1 | rpgt0d 9635 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ 0 < 𝑅) |
13 | | halfpos 9088 |
. . . . 5
⊢ (𝑅 ∈ ℝ → (0 <
𝑅 ↔ (𝑅 / 2) < 𝑅)) |
14 | 8, 13 | syl 14 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ (0 < 𝑅 ↔
(𝑅 / 2) < 𝑅)) |
15 | 12, 14 | mpbid 146 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ (𝑅 / 2) < 𝑅) |
16 | 6, 7, 8, 11, 15 | lelttrd 8023 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅) |
17 | | simpl 108 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ (𝐷 ∈
(∞Met‘𝑋) ∧
𝑃 ∈ 𝑋)) |
18 | 5 | rpxrd 9633 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈
ℝ*) |
19 | 3 | rpxrd 9633 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ 𝑆 ∈
ℝ*) |
20 | | min2inf 11174 |
. . . 4
⊢ (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) →
inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆) |
21 | 7, 9, 20 | syl2anc 409 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆) |
22 | | ssbl 13066 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈
ℝ* ∧ 𝑆
∈ ℝ*) ∧ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆) → (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆)) |
23 | 17, 18, 19, 21, 22 | syl121anc 1233 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆)) |
24 | | breq1 3985 |
. . . 4
⊢ (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → (𝑥 < 𝑅 ↔ inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅)) |
25 | | oveq2 5850 |
. . . . 5
⊢ (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < ))) |
26 | 25 | sseq1d 3171 |
. . . 4
⊢ (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆) ↔ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))) |
27 | 24, 26 | anbi12d 465 |
. . 3
⊢ (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)) ↔ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅 ∧ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆)))) |
28 | 27 | rspcev 2830 |
. 2
⊢
((inf({(𝑅 / 2),
𝑆}, ℝ, < ) ∈
ℝ+ ∧ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅 ∧ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆))) |
29 | 5, 16, 23, 28 | syl12anc 1226 |
1
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ 𝑆 ∈ ℝ+))
→ ∃𝑥 ∈
ℝ+ (𝑥 <
𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆))) |