ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssblex GIF version

Theorem ssblex 14953
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
ssblex (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ssblex
StepHypRef Expression
1 simprl 529 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ+)
21rphalfcld 9844 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ+)
3 simprr 531 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ+)
4 rpmincl 11599 . . 3 (((𝑅 / 2) ∈ ℝ+𝑆 ∈ ℝ+) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+)
52, 3, 4syl2anc 411 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+)
65rpred 9831 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ)
72rpred 9831 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ)
81rpred 9831 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ)
93rpred 9831 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ)
10 min1inf 11593 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ (𝑅 / 2))
117, 9, 10syl2anc 411 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ (𝑅 / 2))
121rpgt0d 9834 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 0 < 𝑅)
13 halfpos 9281 . . . . 5 (𝑅 ∈ ℝ → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
148, 13syl 14 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
1512, 14mpbid 147 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) < 𝑅)
166, 7, 8, 11, 15lelttrd 8210 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅)
17 simpl 109 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
185rpxrd 9832 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ*)
193rpxrd 9832 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
20 min2inf 11594 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆)
217, 9, 20syl2anc 411 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆)
22 ssbl 14948 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ*𝑆 ∈ ℝ*) ∧ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆) → (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))
2317, 18, 19, 21, 22syl121anc 1255 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))
24 breq1 4051 . . . 4 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → (𝑥 < 𝑅 ↔ inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅))
25 oveq2 5962 . . . . 5 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )))
2625sseq1d 3224 . . . 4 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆) ↔ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆)))
2724, 26anbi12d 473 . . 3 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)) ↔ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅 ∧ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))))
2827rspcev 2879 . 2 ((inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+ ∧ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅 ∧ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
295, 16, 23, 28syl12anc 1248 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486  wss 3168  {cpr 3636   class class class wbr 4048  cfv 5277  (class class class)co 5954  infcinf 7097  cr 7937  0cc0 7938  *cxr 8119   < clt 8120  cle 8121   / cdiv 8758  2c2 9100  +crp 9788  ∞Metcxmet 14348  ballcbl 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-map 6747  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-rp 9789  df-xneg 9907  df-xadd 9908  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-psmet 14355  df-xmet 14356  df-bl 14358
This theorem is referenced by:  mopni3  15006
  Copyright terms: Public domain W3C validator