ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssblex GIF version

Theorem ssblex 15113
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
ssblex (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ssblex
StepHypRef Expression
1 simprl 529 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ+)
21rphalfcld 9913 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ+)
3 simprr 531 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ+)
4 rpmincl 11757 . . 3 (((𝑅 / 2) ∈ ℝ+𝑆 ∈ ℝ+) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+)
52, 3, 4syl2anc 411 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+)
65rpred 9900 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ)
72rpred 9900 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ)
81rpred 9900 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ)
93rpred 9900 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ)
10 min1inf 11751 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ (𝑅 / 2))
117, 9, 10syl2anc 411 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ (𝑅 / 2))
121rpgt0d 9903 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 0 < 𝑅)
13 halfpos 9350 . . . . 5 (𝑅 ∈ ℝ → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
148, 13syl 14 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
1512, 14mpbid 147 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) < 𝑅)
166, 7, 8, 11, 15lelttrd 8279 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅)
17 simpl 109 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
185rpxrd 9901 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ*)
193rpxrd 9901 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
20 min2inf 11752 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆)
217, 9, 20syl2anc 411 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆)
22 ssbl 15108 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ*𝑆 ∈ ℝ*) ∧ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆) → (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))
2317, 18, 19, 21, 22syl121anc 1276 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))
24 breq1 4086 . . . 4 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → (𝑥 < 𝑅 ↔ inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅))
25 oveq2 6015 . . . . 5 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )))
2625sseq1d 3253 . . . 4 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆) ↔ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆)))
2724, 26anbi12d 473 . . 3 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)) ↔ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅 ∧ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))))
2827rspcev 2907 . 2 ((inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+ ∧ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅 ∧ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
295, 16, 23, 28syl12anc 1269 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  wss 3197  {cpr 3667   class class class wbr 4083  cfv 5318  (class class class)co 6007  infcinf 7158  cr 8006  0cc0 8007  *cxr 8188   < clt 8189  cle 8190   / cdiv 8827  2c2 9169  +crp 9857  ∞Metcxmet 14508  ballcbl 14510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-map 6805  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-rp 9858  df-xneg 9976  df-xadd 9977  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-psmet 14515  df-xmet 14516  df-bl 14518
This theorem is referenced by:  mopni3  15166
  Copyright terms: Public domain W3C validator