ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssblex GIF version

Theorem ssblex 13071
Description: A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
ssblex (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑅   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem ssblex
StepHypRef Expression
1 simprl 521 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ+)
21rphalfcld 9645 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ+)
3 simprr 522 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ+)
4 rpmincl 11179 . . 3 (((𝑅 / 2) ∈ ℝ+𝑆 ∈ ℝ+) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+)
52, 3, 4syl2anc 409 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+)
65rpred 9632 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ)
72rpred 9632 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) ∈ ℝ)
81rpred 9632 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑅 ∈ ℝ)
93rpred 9632 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ)
10 min1inf 11173 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ (𝑅 / 2))
117, 9, 10syl2anc 409 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ (𝑅 / 2))
121rpgt0d 9635 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 0 < 𝑅)
13 halfpos 9088 . . . . 5 (𝑅 ∈ ℝ → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
148, 13syl 14 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (0 < 𝑅 ↔ (𝑅 / 2) < 𝑅))
1512, 14mpbid 146 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑅 / 2) < 𝑅)
166, 7, 8, 11, 15lelttrd 8023 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅)
17 simpl 108 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋))
185rpxrd 9633 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ*)
193rpxrd 9633 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → 𝑆 ∈ ℝ*)
20 min2inf 11174 . . . 4 (((𝑅 / 2) ∈ ℝ ∧ 𝑆 ∈ ℝ) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆)
217, 9, 20syl2anc 409 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆)
22 ssbl 13066 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ*𝑆 ∈ ℝ*) ∧ inf({(𝑅 / 2), 𝑆}, ℝ, < ) ≤ 𝑆) → (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))
2317, 18, 19, 21, 22syl121anc 1233 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))
24 breq1 3985 . . . 4 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → (𝑥 < 𝑅 ↔ inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅))
25 oveq2 5850 . . . . 5 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → (𝑃(ball‘𝐷)𝑥) = (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )))
2625sseq1d 3171 . . . 4 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → ((𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆) ↔ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆)))
2724, 26anbi12d 465 . . 3 (𝑥 = inf({(𝑅 / 2), 𝑆}, ℝ, < ) → ((𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)) ↔ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅 ∧ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))))
2827rspcev 2830 . 2 ((inf({(𝑅 / 2), 𝑆}, ℝ, < ) ∈ ℝ+ ∧ (inf({(𝑅 / 2), 𝑆}, ℝ, < ) < 𝑅 ∧ (𝑃(ball‘𝐷)inf({(𝑅 / 2), 𝑆}, ℝ, < )) ⊆ (𝑃(ball‘𝐷)𝑆))) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
295, 16, 23, 28syl12anc 1226 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wrex 2445  wss 3116  {cpr 3577   class class class wbr 3982  cfv 5188  (class class class)co 5842  infcinf 6948  cr 7752  0cc0 7753  *cxr 7932   < clt 7933  cle 7934   / cdiv 8568  2c2 8908  +crp 9589  ∞Metcxmet 12620  ballcbl 12622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-psmet 12627  df-xmet 12628  df-bl 12630
This theorem is referenced by:  mopni3  13124
  Copyright terms: Public domain W3C validator