Proof of Theorem pcbc
Step | Hyp | Ref
| Expression |
1 | | simp3 994 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) |
2 | | nnnn0 9142 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
3 | 2 | 3ad2ant1 1013 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈
ℕ0) |
4 | 3 | faccld 10670 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈
ℕ) |
5 | 4 | nnzd 9333 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈
ℤ) |
6 | 4 | nnne0d 8923 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ≠ 0) |
7 | | fznn0sub 10013 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈
ℕ0) |
8 | 7 | 3ad2ant2 1014 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ∈
ℕ0) |
9 | 8 | faccld 10670 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ∈ ℕ) |
10 | | elfznn0 10070 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈
ℕ0) |
11 | 10 | 3ad2ant2 1014 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈
ℕ0) |
12 | 11 | faccld 10670 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈
ℕ) |
13 | 9, 12 | nnmulcld 8927 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((!‘(𝑁 − 𝐾)) · (!‘𝐾)) ∈ ℕ) |
14 | | pcdiv 12256 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧
((!‘𝑁) ∈ ℤ
∧ (!‘𝑁) ≠ 0)
∧ ((!‘(𝑁 −
𝐾)) · (!‘𝐾)) ∈ ℕ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
15 | 1, 5, 6, 13, 14 | syl121anc 1238 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
16 | | bcval2 10684 |
. . . 4
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
17 | 16 | 3ad2ant2 1014 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
18 | 17 | oveq2d 5869 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
19 | | 1zzd 9239 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈
ℤ) |
20 | 3 | nn0zd 9332 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ) |
21 | 19, 20 | fzfigd 10387 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (1...𝑁) ∈ Fin) |
22 | 20 | adantr 274 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℤ) |
23 | | simpl3 997 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℙ) |
24 | | prmnn 12064 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
25 | 23, 24 | syl 14 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℕ) |
26 | | elfznn 10010 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
27 | 26 | nnnn0d 9188 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0) |
28 | 27 | adantl 275 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0) |
29 | 25, 28 | nnexpcld 10631 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑃↑𝑘) ∈ ℕ) |
30 | | znq 9583 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ (𝑃↑𝑘) ∈ ℕ) → (𝑁 / (𝑃↑𝑘)) ∈ ℚ) |
31 | 22, 29, 30 | syl2anc 409 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 / (𝑃↑𝑘)) ∈ ℚ) |
32 | 31 | flqcld 10233 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
33 | 32 | zcnd 9335 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
34 | | simpl2 996 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ (0...𝑁)) |
35 | 10 | nn0zd 9332 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) |
36 | 34, 35 | syl 14 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ ℤ) |
37 | 22, 36 | zsubcld 9339 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 − 𝐾) ∈ ℤ) |
38 | | znq 9583 |
. . . . . . . 8
⊢ (((𝑁 − 𝐾) ∈ ℤ ∧ (𝑃↑𝑘) ∈ ℕ) → ((𝑁 − 𝐾) / (𝑃↑𝑘)) ∈ ℚ) |
39 | 37, 29, 38 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁 − 𝐾) / (𝑃↑𝑘)) ∈ ℚ) |
40 | 39 | flqcld 10233 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) ∈ ℤ) |
41 | 40 | zcnd 9335 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) ∈ ℂ) |
42 | | znq 9583 |
. . . . . . . 8
⊢ ((𝐾 ∈ ℤ ∧ (𝑃↑𝑘) ∈ ℕ) → (𝐾 / (𝑃↑𝑘)) ∈ ℚ) |
43 | 36, 29, 42 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐾 / (𝑃↑𝑘)) ∈ ℚ) |
44 | 43 | flqcld 10233 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃↑𝑘))) ∈ ℤ) |
45 | 44 | zcnd 9335 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃↑𝑘))) ∈ ℂ) |
46 | 41, 45 | addcld 7939 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))) ∈ ℂ) |
47 | 21, 33, 46 | fsumsub 11415 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |
48 | | uzid 9501 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
49 | 20, 48 | syl 14 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘𝑁)) |
50 | | pcfac 12302 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
51 | 3, 49, 1, 50 | syl3anc 1233 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
52 | 11 | nn0ge0d 9191 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝐾) |
53 | | nnre 8885 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
54 | 53 | 3ad2ant1 1013 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ) |
55 | 11 | nn0red 9189 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℝ) |
56 | 54, 55 | subge02d 8456 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
57 | 52, 56 | mpbid 146 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ≤ 𝑁) |
58 | 11 | nn0zd 9332 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℤ) |
59 | 20, 58 | zsubcld 9339 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 − 𝐾) ∈ ℤ) |
60 | | eluz 9500 |
. . . . . . . . 9
⊢ (((𝑁 − 𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾)) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
61 | 59, 20, 60 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾)) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
62 | 57, 61 | mpbird 166 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝐾))) |
63 | | pcfac 12302 |
. . . . . . 7
⊢ (((𝑁 − 𝐾) ∈ ℕ0 ∧ 𝑁 ∈
(ℤ≥‘(𝑁 − 𝐾)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁 − 𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘)))) |
64 | 8, 62, 1, 63 | syl3anc 1233 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁 − 𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘)))) |
65 | | elfzuz3 9978 |
. . . . . . . 8
⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) |
66 | 65 | 3ad2ant2 1014 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ≥‘𝐾)) |
67 | | pcfac 12302 |
. . . . . . 7
⊢ ((𝐾 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝐾) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘)))) |
68 | 11, 66, 1, 67 | syl3anc 1233 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘)))) |
69 | 64, 68 | oveq12d 5871 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘))))) |
70 | 9 | nnzd 9333 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ∈ ℤ) |
71 | 9 | nnne0d 8923 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁 − 𝐾)) ≠ 0) |
72 | 12 | nnzd 9333 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈
ℤ) |
73 | 12 | nnne0d 8923 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ≠ 0) |
74 | | pcmul 12255 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧
((!‘(𝑁 − 𝐾)) ∈ ℤ ∧
(!‘(𝑁 − 𝐾)) ≠ 0) ∧ ((!‘𝐾) ∈ ℤ ∧
(!‘𝐾) ≠ 0)) →
(𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾)))) |
75 | 1, 70, 71, 72, 73, 74 | syl122anc 1242 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁 − 𝐾))) + (𝑃 pCnt (!‘𝐾)))) |
76 | 21, 41, 45 | fsumadd 11369 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃↑𝑘))))) |
77 | 69, 75, 76 | 3eqtr4d 2213 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))) = Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) |
78 | 51, 77 | oveq12d 5871 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |
79 | 47, 78 | eqtr4d 2206 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘))))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁 − 𝐾)) · (!‘𝐾))))) |
80 | 15, 18, 79 | 3eqtr4d 2213 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃↑𝑘))) − ((⌊‘((𝑁 − 𝐾) / (𝑃↑𝑘))) + (⌊‘(𝐾 / (𝑃↑𝑘)))))) |