ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcbc GIF version

Theorem pcbc 12281
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcbc ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
Distinct variable groups:   𝑃,𝑘   𝑘,𝑁   𝑘,𝐾

Proof of Theorem pcbc
StepHypRef Expression
1 simp3 989 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
2 nnnn0 9121 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
323ad2ant1 1008 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℕ0)
43faccld 10649 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈ ℕ)
54nnzd 9312 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ∈ ℤ)
64nnne0d 8902 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝑁) ≠ 0)
7 fznn0sub 9992 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
873ad2ant2 1009 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℕ0)
98faccld 10649 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ∈ ℕ)
10 elfznn0 10049 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
11103ad2ant2 1009 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℕ0)
1211faccld 10649 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈ ℕ)
139, 12nnmulcld 8906 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
14 pcdiv 12234 . . 3 ((𝑃 ∈ ℙ ∧ ((!‘𝑁) ∈ ℤ ∧ (!‘𝑁) ≠ 0) ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
151, 5, 6, 13, 14syl121anc 1233 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
16 bcval2 10663 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
17163ad2ant2 1009 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
1817oveq2d 5858 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = (𝑃 pCnt ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾)))))
19 1zzd 9218 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 1 ∈ ℤ)
203nn0zd 9311 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℤ)
2119, 20fzfigd 10366 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (1...𝑁) ∈ Fin)
2220adantr 274 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
23 simpl3 992 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℙ)
24 prmnn 12042 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2523, 24syl 14 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑃 ∈ ℕ)
26 elfznn 9989 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
2726nnnn0d 9167 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ0)
2827adantl 275 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ0)
2925, 28nnexpcld 10610 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑃𝑘) ∈ ℕ)
30 znq 9562 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑃𝑘) ∈ ℕ) → (𝑁 / (𝑃𝑘)) ∈ ℚ)
3122, 29, 30syl2anc 409 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁 / (𝑃𝑘)) ∈ ℚ)
3231flqcld 10212 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
3332zcnd 9314 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℂ)
34 simpl2 991 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ (0...𝑁))
3510nn0zd 9311 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
3634, 35syl 14 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → 𝐾 ∈ ℤ)
3722, 36zsubcld 9318 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝑁𝐾) ∈ ℤ)
38 znq 9562 . . . . . . . 8 (((𝑁𝐾) ∈ ℤ ∧ (𝑃𝑘) ∈ ℕ) → ((𝑁𝐾) / (𝑃𝑘)) ∈ ℚ)
3937, 29, 38syl2anc 409 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((𝑁𝐾) / (𝑃𝑘)) ∈ ℚ)
4039flqcld 10212 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁𝐾) / (𝑃𝑘))) ∈ ℤ)
4140zcnd 9314 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘((𝑁𝐾) / (𝑃𝑘))) ∈ ℂ)
42 znq 9562 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑃𝑘) ∈ ℕ) → (𝐾 / (𝑃𝑘)) ∈ ℚ)
4336, 29, 42syl2anc 409 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (𝐾 / (𝑃𝑘)) ∈ ℚ)
4443flqcld 10212 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃𝑘))) ∈ ℤ)
4544zcnd 9314 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → (⌊‘(𝐾 / (𝑃𝑘))) ∈ ℂ)
4641, 45addcld 7918 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...𝑁)) → ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))) ∈ ℂ)
4721, 33, 46fsumsub 11393 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
48 uzid 9480 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
4920, 48syl 14 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ𝑁))
50 pcfac 12280 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))))
513, 49, 1, 50syl3anc 1228 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))))
5211nn0ge0d 9170 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 0 ≤ 𝐾)
53 nnre 8864 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
54533ad2ant1 1008 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
5511nn0red 9168 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℝ)
5654, 55subge02d 8435 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (0 ≤ 𝐾 ↔ (𝑁𝐾) ≤ 𝑁))
5752, 56mpbid 146 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ≤ 𝑁)
5811nn0zd 9311 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝐾 ∈ ℤ)
5920, 58zsubcld 9318 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁𝐾) ∈ ℤ)
60 eluz 9479 . . . . . . . . 9 (((𝑁𝐾) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝑁𝐾)) ↔ (𝑁𝐾) ≤ 𝑁))
6159, 20, 60syl2anc 409 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ (ℤ‘(𝑁𝐾)) ↔ (𝑁𝐾) ≤ 𝑁))
6257, 61mpbird 166 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ‘(𝑁𝐾)))
63 pcfac 12280 . . . . . . 7 (((𝑁𝐾) ∈ ℕ0𝑁 ∈ (ℤ‘(𝑁𝐾)) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))))
648, 62, 1, 63syl3anc 1228 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘(𝑁𝐾))) = Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))))
65 elfzuz3 9957 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ (ℤ𝐾))
66653ad2ant2 1009 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ (ℤ𝐾))
67 pcfac 12280 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ (ℤ𝐾) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘))))
6811, 66, 1, 67syl3anc 1228 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝐾)) = Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘))))
6964, 68oveq12d 5860 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘)))))
709nnzd 9312 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ∈ ℤ)
719nnne0d 8902 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘(𝑁𝐾)) ≠ 0)
7212nnzd 9312 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ∈ ℤ)
7312nnne0d 8902 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (!‘𝐾) ≠ 0)
74 pcmul 12233 . . . . . 6 ((𝑃 ∈ ℙ ∧ ((!‘(𝑁𝐾)) ∈ ℤ ∧ (!‘(𝑁𝐾)) ≠ 0) ∧ ((!‘𝐾) ∈ ℤ ∧ (!‘𝐾) ≠ 0)) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))))
751, 70, 71, 72, 73, 74syl122anc 1237 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = ((𝑃 pCnt (!‘(𝑁𝐾))) + (𝑃 pCnt (!‘𝐾))))
7621, 41, 45fsumadd 11347 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘((𝑁𝐾) / (𝑃𝑘))) + Σ𝑘 ∈ (1...𝑁)(⌊‘(𝐾 / (𝑃𝑘)))))
7769, 75, 763eqtr4d 2208 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾))) = Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘)))))
7851, 77oveq12d 5860 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))) = (Σ𝑘 ∈ (1...𝑁)(⌊‘(𝑁 / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑁)((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
7947, 78eqtr4d 2201 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))) = ((𝑃 pCnt (!‘𝑁)) − (𝑃 pCnt ((!‘(𝑁𝐾)) · (!‘𝐾)))))
8015, 18, 793eqtr4d 2208 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (𝑁C𝐾)) = Σ𝑘 ∈ (1...𝑁)((⌊‘(𝑁 / (𝑃𝑘))) − ((⌊‘((𝑁𝐾) / (𝑃𝑘))) + (⌊‘(𝐾 / (𝑃𝑘))))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  cfv 5188  (class class class)co 5842  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758  cle 7934  cmin 8069   / cdiv 8568  cn 8857  0cn0 9114  cz 9191  cuz 9466  cq 9557  ...cfz 9944  cfl 10203  cexp 10454  !cfa 10638  Ccbc 10660  Σcsu 11294  cprime 12039   pCnt cpc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-2o 6385  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-dvds 11728  df-gcd 11876  df-prm 12040  df-pc 12217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator