ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemg GIF version

Theorem ennnfonelemg 12889
Description: Lemma for ennnfone 12911. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemg ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Distinct variable groups:   𝐴,𝑔,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦   𝑥,𝑁   𝑓,𝑔,𝑥,𝑦   𝑔,𝑗,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑗,𝑘,𝑛)   𝐴(𝑓,𝑗,𝑘,𝑛)   𝐹(𝑓,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemg
StepHypRef Expression
1 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21a1i 9 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}))))
3 simpr 110 . . . . . . 7 ((𝑥 = 𝑓𝑦 = 𝑗) → 𝑦 = 𝑗)
43fveq2d 5603 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝐹𝑦) = (𝐹𝑗))
53imaeq2d 5041 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝐹𝑦) = (𝐹𝑗))
64, 5eleq12d 2278 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹𝑗) ∈ (𝐹𝑗)))
7 simpl 109 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → 𝑥 = 𝑓)
87dmeqd 4899 . . . . . . . 8 ((𝑥 = 𝑓𝑦 = 𝑗) → dom 𝑥 = dom 𝑓)
98, 4opeq12d 3841 . . . . . . 7 ((𝑥 = 𝑓𝑦 = 𝑗) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom 𝑓, (𝐹𝑗)⟩)
109sneqd 3656 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom 𝑓, (𝐹𝑗)⟩})
117, 10uneq12d 3336 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}))
126, 7, 11ifbieq12d 3606 . . . 4 ((𝑥 = 𝑓𝑦 = 𝑗) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
1312adantl 277 . . 3 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ (𝑥 = 𝑓𝑦 = 𝑗)) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
14 ssrab2 3286 . . . 4 {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ⊆ (𝐴pm ω)
15 simprl 529 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
1614, 15sselid 3199 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑓 ∈ (𝐴pm ω))
17 simprr 531 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑗 ∈ ω)
18 simplrl 535 . . . 4 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
19 dmeq 4897 . . . . . 6 (𝑔 = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) → dom 𝑔 = dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}))
2019eleq1d 2276 . . . . 5 (𝑔 = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) → (dom 𝑔 ∈ ω ↔ dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ ω))
21 omex 4659 . . . . . . . 8 ω ∈ V
22 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
23 focdmex 6223 . . . . . . . 8 (ω ∈ V → (𝐹:ω–onto𝐴𝐴 ∈ V))
2421, 22, 23mpsyl 65 . . . . . . 7 (𝜑𝐴 ∈ V)
2524ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝐴 ∈ V)
2621a1i 9 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → ω ∈ V)
27 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
28 elrabi 2933 . . . . . . . . . 10 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → 𝑓 ∈ (𝐴pm ω))
29 elpmi 6777 . . . . . . . . . 10 (𝑓 ∈ (𝐴pm ω) → (𝑓:dom 𝑓𝐴 ∧ dom 𝑓 ⊆ ω))
3028, 29syl 14 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → (𝑓:dom 𝑓𝐴 ∧ dom 𝑓 ⊆ ω))
3130simpld 112 . . . . . . . 8 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → 𝑓:dom 𝑓𝐴)
3227, 31syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓:dom 𝑓𝐴)
33 dmeq 4897 . . . . . . . . . . 11 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
3433eleq1d 2276 . . . . . . . . . 10 (𝑔 = 𝑓 → (dom 𝑔 ∈ ω ↔ dom 𝑓 ∈ ω))
3534elrab 2936 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ↔ (𝑓 ∈ (𝐴pm ω) ∧ dom 𝑓 ∈ ω))
3635simprbi 275 . . . . . . . 8 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → dom 𝑓 ∈ ω)
3727, 36syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom 𝑓 ∈ ω)
38 nnord 4678 . . . . . . . . 9 (dom 𝑓 ∈ ω → Ord dom 𝑓)
3937, 38syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → Ord dom 𝑓)
40 ordirr 4608 . . . . . . . 8 (Ord dom 𝑓 → ¬ dom 𝑓 ∈ dom 𝑓)
4139, 40syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → ¬ dom 𝑓 ∈ dom 𝑓)
4222adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐹:ω–onto𝐴)
43 fof 5520 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
4442, 43syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐹:ω⟶𝐴)
4544, 17ffvelcdmd 5739 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝐹𝑗) ∈ 𝐴)
4645adantr 276 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝐹𝑗) ∈ 𝐴)
47 fsnunf 5807 . . . . . . 7 ((𝑓:dom 𝑓𝐴 ∧ (dom 𝑓 ∈ ω ∧ ¬ dom 𝑓 ∈ dom 𝑓) ∧ (𝐹𝑗) ∈ 𝐴) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴)
4832, 37, 41, 46, 47syl121anc 1255 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴)
49 df-suc 4436 . . . . . . . . 9 suc dom 𝑓 = (dom 𝑓 ∪ {dom 𝑓})
50 peano2 4661 . . . . . . . . 9 (dom 𝑓 ∈ ω → suc dom 𝑓 ∈ ω)
5149, 50eqeltrrid 2295 . . . . . . . 8 (dom 𝑓 ∈ ω → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω)
5237, 51syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω)
53 elomssom 4671 . . . . . . 7 ((dom 𝑓 ∪ {dom 𝑓}) ∈ ω → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)
5452, 53syl 14 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)
55 elpm2r 6776 . . . . . 6 (((𝐴 ∈ V ∧ ω ∈ V) ∧ ((𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴 ∧ (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ (𝐴pm ω))
5625, 26, 48, 54, 55syl22anc 1251 . . . . 5 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ (𝐴pm ω))
5748fdmd 5452 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) = (dom 𝑓 ∪ {dom 𝑓}))
5857, 52eqeltrd 2284 . . . . 5 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ ω)
5920, 56, 58elrabd 2938 . . . 4 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
60 ennnfonelemh.dceq . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6160adantr 276 . . . . 5 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6261, 42, 17ennnfonelemdc 12885 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → DECID (𝐹𝑗) ∈ (𝐹𝑗))
6318, 59, 62ifcldadc 3609 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
642, 13, 16, 17, 63ovmpod 6096 . 2 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
6564, 63eqeltrd 2284 1 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2178  wne 2378  wral 2486  wrex 2487  {crab 2490  Vcvv 2776  cun 3172  wss 3174  c0 3468  ifcif 3579  {csn 3643  cop 3646  cmpt 4121  Ord word 4427  suc csuc 4430  ωcom 4656  ccnv 4692  dom cdm 4693  cima 4696  wf 5286  ontowfo 5288  cfv 5290  (class class class)co 5967  cmpo 5969  freccfrec 6499  pm cpm 6759  0cc0 7960  1c1 7961   + caddc 7963  cmin 8278  0cn0 9330  cz 9407  seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pm 6761
This theorem is referenced by:  ennnfonelemh  12890  ennnfonelem0  12891  ennnfonelemp1  12892  ennnfonelemom  12894
  Copyright terms: Public domain W3C validator