ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemg GIF version

Theorem ennnfonelemg 12563
Description: Lemma for ennnfone 12585. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemg ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Distinct variable groups:   𝐴,𝑔,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦   𝑥,𝑁   𝑓,𝑔,𝑥,𝑦   𝑔,𝑗,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑗,𝑘,𝑛)   𝐴(𝑓,𝑗,𝑘,𝑛)   𝐹(𝑓,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemg
StepHypRef Expression
1 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21a1i 9 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}))))
3 simpr 110 . . . . . . 7 ((𝑥 = 𝑓𝑦 = 𝑗) → 𝑦 = 𝑗)
43fveq2d 5559 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝐹𝑦) = (𝐹𝑗))
53imaeq2d 5006 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝐹𝑦) = (𝐹𝑗))
64, 5eleq12d 2264 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹𝑗) ∈ (𝐹𝑗)))
7 simpl 109 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → 𝑥 = 𝑓)
87dmeqd 4865 . . . . . . . 8 ((𝑥 = 𝑓𝑦 = 𝑗) → dom 𝑥 = dom 𝑓)
98, 4opeq12d 3813 . . . . . . 7 ((𝑥 = 𝑓𝑦 = 𝑗) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom 𝑓, (𝐹𝑗)⟩)
109sneqd 3632 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom 𝑓, (𝐹𝑗)⟩})
117, 10uneq12d 3315 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}))
126, 7, 11ifbieq12d 3584 . . . 4 ((𝑥 = 𝑓𝑦 = 𝑗) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
1312adantl 277 . . 3 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ (𝑥 = 𝑓𝑦 = 𝑗)) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
14 ssrab2 3265 . . . 4 {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ⊆ (𝐴pm ω)
15 simprl 529 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
1614, 15sselid 3178 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑓 ∈ (𝐴pm ω))
17 simprr 531 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑗 ∈ ω)
18 simplrl 535 . . . 4 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
19 dmeq 4863 . . . . . 6 (𝑔 = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) → dom 𝑔 = dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}))
2019eleq1d 2262 . . . . 5 (𝑔 = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) → (dom 𝑔 ∈ ω ↔ dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ ω))
21 omex 4626 . . . . . . . 8 ω ∈ V
22 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
23 focdmex 6169 . . . . . . . 8 (ω ∈ V → (𝐹:ω–onto𝐴𝐴 ∈ V))
2421, 22, 23mpsyl 65 . . . . . . 7 (𝜑𝐴 ∈ V)
2524ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝐴 ∈ V)
2621a1i 9 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → ω ∈ V)
27 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
28 elrabi 2914 . . . . . . . . . 10 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → 𝑓 ∈ (𝐴pm ω))
29 elpmi 6723 . . . . . . . . . 10 (𝑓 ∈ (𝐴pm ω) → (𝑓:dom 𝑓𝐴 ∧ dom 𝑓 ⊆ ω))
3028, 29syl 14 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → (𝑓:dom 𝑓𝐴 ∧ dom 𝑓 ⊆ ω))
3130simpld 112 . . . . . . . 8 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → 𝑓:dom 𝑓𝐴)
3227, 31syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓:dom 𝑓𝐴)
33 dmeq 4863 . . . . . . . . . . 11 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
3433eleq1d 2262 . . . . . . . . . 10 (𝑔 = 𝑓 → (dom 𝑔 ∈ ω ↔ dom 𝑓 ∈ ω))
3534elrab 2917 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ↔ (𝑓 ∈ (𝐴pm ω) ∧ dom 𝑓 ∈ ω))
3635simprbi 275 . . . . . . . 8 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → dom 𝑓 ∈ ω)
3727, 36syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom 𝑓 ∈ ω)
38 nnord 4645 . . . . . . . . 9 (dom 𝑓 ∈ ω → Ord dom 𝑓)
3937, 38syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → Ord dom 𝑓)
40 ordirr 4575 . . . . . . . 8 (Ord dom 𝑓 → ¬ dom 𝑓 ∈ dom 𝑓)
4139, 40syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → ¬ dom 𝑓 ∈ dom 𝑓)
4222adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐹:ω–onto𝐴)
43 fof 5477 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
4442, 43syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐹:ω⟶𝐴)
4544, 17ffvelcdmd 5695 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝐹𝑗) ∈ 𝐴)
4645adantr 276 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝐹𝑗) ∈ 𝐴)
47 fsnunf 5759 . . . . . . 7 ((𝑓:dom 𝑓𝐴 ∧ (dom 𝑓 ∈ ω ∧ ¬ dom 𝑓 ∈ dom 𝑓) ∧ (𝐹𝑗) ∈ 𝐴) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴)
4832, 37, 41, 46, 47syl121anc 1254 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴)
49 df-suc 4403 . . . . . . . . 9 suc dom 𝑓 = (dom 𝑓 ∪ {dom 𝑓})
50 peano2 4628 . . . . . . . . 9 (dom 𝑓 ∈ ω → suc dom 𝑓 ∈ ω)
5149, 50eqeltrrid 2281 . . . . . . . 8 (dom 𝑓 ∈ ω → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω)
5237, 51syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω)
53 elomssom 4638 . . . . . . 7 ((dom 𝑓 ∪ {dom 𝑓}) ∈ ω → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)
5452, 53syl 14 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)
55 elpm2r 6722 . . . . . 6 (((𝐴 ∈ V ∧ ω ∈ V) ∧ ((𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴 ∧ (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ (𝐴pm ω))
5625, 26, 48, 54, 55syl22anc 1250 . . . . 5 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ (𝐴pm ω))
5748fdmd 5411 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) = (dom 𝑓 ∪ {dom 𝑓}))
5857, 52eqeltrd 2270 . . . . 5 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ ω)
5920, 56, 58elrabd 2919 . . . 4 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
60 ennnfonelemh.dceq . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6160adantr 276 . . . . 5 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6261, 42, 17ennnfonelemdc 12559 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → DECID (𝐹𝑗) ∈ (𝐹𝑗))
6318, 59, 62ifcldadc 3587 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
642, 13, 16, 17, 63ovmpod 6047 . 2 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
6564, 63eqeltrd 2270 1 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2164  wne 2364  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  cun 3152  wss 3154  c0 3447  ifcif 3558  {csn 3619  cop 3622  cmpt 4091  Ord word 4394  suc csuc 4397  ωcom 4623  ccnv 4659  dom cdm 4660  cima 4663  wf 5251  ontowfo 5253  cfv 5255  (class class class)co 5919  cmpo 5921  freccfrec 6445  pm cpm 6705  0cc0 7874  1c1 7875   + caddc 7877  cmin 8192  0cn0 9243  cz 9320  seqcseq 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pm 6707
This theorem is referenced by:  ennnfonelemh  12564  ennnfonelem0  12565  ennnfonelemp1  12566  ennnfonelemom  12568
  Copyright terms: Public domain W3C validator