ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemg GIF version

Theorem ennnfonelemg 12974
Description: Lemma for ennnfone 12996. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemg ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Distinct variable groups:   𝐴,𝑔,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦   𝑥,𝑁   𝑓,𝑔,𝑥,𝑦   𝑔,𝑗,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑗,𝑘,𝑛)   𝐴(𝑓,𝑗,𝑘,𝑛)   𝐹(𝑓,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemg
StepHypRef Expression
1 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21a1i 9 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}))))
3 simpr 110 . . . . . . 7 ((𝑥 = 𝑓𝑦 = 𝑗) → 𝑦 = 𝑗)
43fveq2d 5631 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝐹𝑦) = (𝐹𝑗))
53imaeq2d 5068 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝐹𝑦) = (𝐹𝑗))
64, 5eleq12d 2300 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹𝑗) ∈ (𝐹𝑗)))
7 simpl 109 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → 𝑥 = 𝑓)
87dmeqd 4925 . . . . . . . 8 ((𝑥 = 𝑓𝑦 = 𝑗) → dom 𝑥 = dom 𝑓)
98, 4opeq12d 3865 . . . . . . 7 ((𝑥 = 𝑓𝑦 = 𝑗) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom 𝑓, (𝐹𝑗)⟩)
109sneqd 3679 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom 𝑓, (𝐹𝑗)⟩})
117, 10uneq12d 3359 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}))
126, 7, 11ifbieq12d 3629 . . . 4 ((𝑥 = 𝑓𝑦 = 𝑗) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
1312adantl 277 . . 3 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ (𝑥 = 𝑓𝑦 = 𝑗)) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
14 ssrab2 3309 . . . 4 {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ⊆ (𝐴pm ω)
15 simprl 529 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
1614, 15sselid 3222 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑓 ∈ (𝐴pm ω))
17 simprr 531 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑗 ∈ ω)
18 simplrl 535 . . . 4 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
19 dmeq 4923 . . . . . 6 (𝑔 = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) → dom 𝑔 = dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}))
2019eleq1d 2298 . . . . 5 (𝑔 = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) → (dom 𝑔 ∈ ω ↔ dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ ω))
21 omex 4685 . . . . . . . 8 ω ∈ V
22 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
23 focdmex 6260 . . . . . . . 8 (ω ∈ V → (𝐹:ω–onto𝐴𝐴 ∈ V))
2421, 22, 23mpsyl 65 . . . . . . 7 (𝜑𝐴 ∈ V)
2524ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝐴 ∈ V)
2621a1i 9 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → ω ∈ V)
27 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
28 elrabi 2956 . . . . . . . . . 10 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → 𝑓 ∈ (𝐴pm ω))
29 elpmi 6814 . . . . . . . . . 10 (𝑓 ∈ (𝐴pm ω) → (𝑓:dom 𝑓𝐴 ∧ dom 𝑓 ⊆ ω))
3028, 29syl 14 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → (𝑓:dom 𝑓𝐴 ∧ dom 𝑓 ⊆ ω))
3130simpld 112 . . . . . . . 8 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → 𝑓:dom 𝑓𝐴)
3227, 31syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓:dom 𝑓𝐴)
33 dmeq 4923 . . . . . . . . . . 11 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
3433eleq1d 2298 . . . . . . . . . 10 (𝑔 = 𝑓 → (dom 𝑔 ∈ ω ↔ dom 𝑓 ∈ ω))
3534elrab 2959 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ↔ (𝑓 ∈ (𝐴pm ω) ∧ dom 𝑓 ∈ ω))
3635simprbi 275 . . . . . . . 8 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → dom 𝑓 ∈ ω)
3727, 36syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom 𝑓 ∈ ω)
38 nnord 4704 . . . . . . . . 9 (dom 𝑓 ∈ ω → Ord dom 𝑓)
3937, 38syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → Ord dom 𝑓)
40 ordirr 4634 . . . . . . . 8 (Ord dom 𝑓 → ¬ dom 𝑓 ∈ dom 𝑓)
4139, 40syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → ¬ dom 𝑓 ∈ dom 𝑓)
4222adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐹:ω–onto𝐴)
43 fof 5548 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
4442, 43syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐹:ω⟶𝐴)
4544, 17ffvelcdmd 5771 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝐹𝑗) ∈ 𝐴)
4645adantr 276 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝐹𝑗) ∈ 𝐴)
47 fsnunf 5839 . . . . . . 7 ((𝑓:dom 𝑓𝐴 ∧ (dom 𝑓 ∈ ω ∧ ¬ dom 𝑓 ∈ dom 𝑓) ∧ (𝐹𝑗) ∈ 𝐴) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴)
4832, 37, 41, 46, 47syl121anc 1276 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴)
49 df-suc 4462 . . . . . . . . 9 suc dom 𝑓 = (dom 𝑓 ∪ {dom 𝑓})
50 peano2 4687 . . . . . . . . 9 (dom 𝑓 ∈ ω → suc dom 𝑓 ∈ ω)
5149, 50eqeltrrid 2317 . . . . . . . 8 (dom 𝑓 ∈ ω → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω)
5237, 51syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω)
53 elomssom 4697 . . . . . . 7 ((dom 𝑓 ∪ {dom 𝑓}) ∈ ω → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)
5452, 53syl 14 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)
55 elpm2r 6813 . . . . . 6 (((𝐴 ∈ V ∧ ω ∈ V) ∧ ((𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴 ∧ (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ (𝐴pm ω))
5625, 26, 48, 54, 55syl22anc 1272 . . . . 5 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ (𝐴pm ω))
5748fdmd 5480 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) = (dom 𝑓 ∪ {dom 𝑓}))
5857, 52eqeltrd 2306 . . . . 5 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ ω)
5920, 56, 58elrabd 2961 . . . 4 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
60 ennnfonelemh.dceq . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6160adantr 276 . . . . 5 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6261, 42, 17ennnfonelemdc 12970 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → DECID (𝐹𝑗) ∈ (𝐹𝑗))
6318, 59, 62ifcldadc 3632 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
642, 13, 16, 17, 63ovmpod 6132 . 2 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
6564, 63eqeltrd 2306 1 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  wral 2508  wrex 2509  {crab 2512  Vcvv 2799  cun 3195  wss 3197  c0 3491  ifcif 3602  {csn 3666  cop 3669  cmpt 4145  Ord word 4453  suc csuc 4456  ωcom 4682  ccnv 4718  dom cdm 4719  cima 4722  wf 5314  ontowfo 5316  cfv 5318  (class class class)co 6001  cmpo 6003  freccfrec 6536  pm cpm 6796  0cc0 7999  1c1 8000   + caddc 8002  cmin 8317  0cn0 9369  cz 9446  seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pm 6798
This theorem is referenced by:  ennnfonelemh  12975  ennnfonelem0  12976  ennnfonelemp1  12977  ennnfonelemom  12979
  Copyright terms: Public domain W3C validator