ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemg GIF version

Theorem ennnfonelemg 12620
Description: Lemma for ennnfone 12642. Closure for 𝐺. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemh.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemh.ne (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹𝑘) ≠ (𝐹𝑗))
ennnfonelemh.g 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
ennnfonelemh.n 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
ennnfonelemh.j 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (𝑁‘(𝑥 − 1))))
ennnfonelemh.h 𝐻 = seq0(𝐺, 𝐽)
Assertion
Ref Expression
ennnfonelemg ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Distinct variable groups:   𝐴,𝑔,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦   𝑥,𝑁   𝑓,𝑔,𝑥,𝑦   𝑔,𝑗,𝑥,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑗,𝑘,𝑛)   𝐴(𝑓,𝑗,𝑘,𝑛)   𝐹(𝑓,𝑗,𝑘,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝐻(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝐽(𝑥,𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)   𝑁(𝑦,𝑓,𝑔,𝑗,𝑘,𝑛)

Proof of Theorem ennnfonelemg
StepHypRef Expression
1 ennnfonelemh.g . . . 4 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})))
21a1i 9 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐺 = (𝑥 ∈ (𝐴pm ω), 𝑦 ∈ ω ↦ if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}))))
3 simpr 110 . . . . . . 7 ((𝑥 = 𝑓𝑦 = 𝑗) → 𝑦 = 𝑗)
43fveq2d 5562 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝐹𝑦) = (𝐹𝑗))
53imaeq2d 5009 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝐹𝑦) = (𝐹𝑗))
64, 5eleq12d 2267 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → ((𝐹𝑦) ∈ (𝐹𝑦) ↔ (𝐹𝑗) ∈ (𝐹𝑗)))
7 simpl 109 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → 𝑥 = 𝑓)
87dmeqd 4868 . . . . . . . 8 ((𝑥 = 𝑓𝑦 = 𝑗) → dom 𝑥 = dom 𝑓)
98, 4opeq12d 3816 . . . . . . 7 ((𝑥 = 𝑓𝑦 = 𝑗) → ⟨dom 𝑥, (𝐹𝑦)⟩ = ⟨dom 𝑓, (𝐹𝑗)⟩)
109sneqd 3635 . . . . . 6 ((𝑥 = 𝑓𝑦 = 𝑗) → {⟨dom 𝑥, (𝐹𝑦)⟩} = {⟨dom 𝑓, (𝐹𝑗)⟩})
117, 10uneq12d 3318 . . . . 5 ((𝑥 = 𝑓𝑦 = 𝑗) → (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩}) = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}))
126, 7, 11ifbieq12d 3587 . . . 4 ((𝑥 = 𝑓𝑦 = 𝑗) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
1312adantl 277 . . 3 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ (𝑥 = 𝑓𝑦 = 𝑗)) → if((𝐹𝑦) ∈ (𝐹𝑦), 𝑥, (𝑥 ∪ {⟨dom 𝑥, (𝐹𝑦)⟩})) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
14 ssrab2 3268 . . . 4 {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ⊆ (𝐴pm ω)
15 simprl 529 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
1614, 15sselid 3181 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑓 ∈ (𝐴pm ω))
17 simprr 531 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝑗 ∈ ω)
18 simplrl 535 . . . 4 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
19 dmeq 4866 . . . . . 6 (𝑔 = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) → dom 𝑔 = dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}))
2019eleq1d 2265 . . . . 5 (𝑔 = (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) → (dom 𝑔 ∈ ω ↔ dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ ω))
21 omex 4629 . . . . . . . 8 ω ∈ V
22 ennnfonelemh.f . . . . . . . 8 (𝜑𝐹:ω–onto𝐴)
23 focdmex 6172 . . . . . . . 8 (ω ∈ V → (𝐹:ω–onto𝐴𝐴 ∈ V))
2421, 22, 23mpsyl 65 . . . . . . 7 (𝜑𝐴 ∈ V)
2524ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝐴 ∈ V)
2621a1i 9 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → ω ∈ V)
27 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
28 elrabi 2917 . . . . . . . . . 10 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → 𝑓 ∈ (𝐴pm ω))
29 elpmi 6726 . . . . . . . . . 10 (𝑓 ∈ (𝐴pm ω) → (𝑓:dom 𝑓𝐴 ∧ dom 𝑓 ⊆ ω))
3028, 29syl 14 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → (𝑓:dom 𝑓𝐴 ∧ dom 𝑓 ⊆ ω))
3130simpld 112 . . . . . . . 8 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → 𝑓:dom 𝑓𝐴)
3227, 31syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → 𝑓:dom 𝑓𝐴)
33 dmeq 4866 . . . . . . . . . . 11 (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓)
3433eleq1d 2265 . . . . . . . . . 10 (𝑔 = 𝑓 → (dom 𝑔 ∈ ω ↔ dom 𝑓 ∈ ω))
3534elrab 2920 . . . . . . . . 9 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ↔ (𝑓 ∈ (𝐴pm ω) ∧ dom 𝑓 ∈ ω))
3635simprbi 275 . . . . . . . 8 (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} → dom 𝑓 ∈ ω)
3727, 36syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom 𝑓 ∈ ω)
38 nnord 4648 . . . . . . . . 9 (dom 𝑓 ∈ ω → Ord dom 𝑓)
3937, 38syl 14 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → Ord dom 𝑓)
40 ordirr 4578 . . . . . . . 8 (Ord dom 𝑓 → ¬ dom 𝑓 ∈ dom 𝑓)
4139, 40syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → ¬ dom 𝑓 ∈ dom 𝑓)
4222adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐹:ω–onto𝐴)
43 fof 5480 . . . . . . . . . 10 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
4442, 43syl 14 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → 𝐹:ω⟶𝐴)
4544, 17ffvelcdmd 5698 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝐹𝑗) ∈ 𝐴)
4645adantr 276 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝐹𝑗) ∈ 𝐴)
47 fsnunf 5762 . . . . . . 7 ((𝑓:dom 𝑓𝐴 ∧ (dom 𝑓 ∈ ω ∧ ¬ dom 𝑓 ∈ dom 𝑓) ∧ (𝐹𝑗) ∈ 𝐴) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴)
4832, 37, 41, 46, 47syl121anc 1254 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴)
49 df-suc 4406 . . . . . . . . 9 suc dom 𝑓 = (dom 𝑓 ∪ {dom 𝑓})
50 peano2 4631 . . . . . . . . 9 (dom 𝑓 ∈ ω → suc dom 𝑓 ∈ ω)
5149, 50eqeltrrid 2284 . . . . . . . 8 (dom 𝑓 ∈ ω → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω)
5237, 51syl 14 . . . . . . 7 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω)
53 elomssom 4641 . . . . . . 7 ((dom 𝑓 ∪ {dom 𝑓}) ∈ ω → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)
5452, 53syl 14 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)
55 elpm2r 6725 . . . . . 6 (((𝐴 ∈ V ∧ ω ∈ V) ∧ ((𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴 ∧ (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ (𝐴pm ω))
5625, 26, 48, 54, 55syl22anc 1250 . . . . 5 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ (𝐴pm ω))
5748fdmd 5414 . . . . . 6 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) = (dom 𝑓 ∪ {dom 𝑓}))
5857, 52eqeltrd 2273 . . . . 5 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → dom (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ ω)
5920, 56, 58elrabd 2922 . . . 4 (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) ∧ ¬ (𝐹𝑗) ∈ (𝐹𝑗)) → (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩}) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
60 ennnfonelemh.dceq . . . . . 6 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6160adantr 276 . . . . 5 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
6261, 42, 17ennnfonelemdc 12616 . . . 4 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → DECID (𝐹𝑗) ∈ (𝐹𝑗))
6318, 59, 62ifcldadc 3590 . . 3 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
642, 13, 16, 17, 63ovmpod 6050 . 2 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) = if((𝐹𝑗) ∈ (𝐹𝑗), 𝑓, (𝑓 ∪ {⟨dom 𝑓, (𝐹𝑗)⟩})))
6564, 63eqeltrd 2273 1 ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴pm ω) ∣ dom 𝑔 ∈ ω})
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  cun 3155  wss 3157  c0 3450  ifcif 3561  {csn 3622  cop 3625  cmpt 4094  Ord word 4397  suc csuc 4400  ωcom 4626  ccnv 4662  dom cdm 4663  cima 4666  wf 5254  ontowfo 5256  cfv 5258  (class class class)co 5922  cmpo 5924  freccfrec 6448  pm cpm 6708  0cc0 7879  1c1 7880   + caddc 7882  cmin 8197  0cn0 9249  cz 9326  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pm 6710
This theorem is referenced by:  ennnfonelemh  12621  ennnfonelem0  12622  ennnfonelemp1  12623  ennnfonelemom  12625
  Copyright terms: Public domain W3C validator