Proof of Theorem ennnfonelemg
| Step | Hyp | Ref
| Expression |
| 1 | | ennnfonelemh.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| 2 | 1 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦
if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉})))) |
| 3 | | simpr 110 |
. . . . . . 7
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → 𝑦 = 𝑗) |
| 4 | 3 | fveq2d 5562 |
. . . . . 6
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → (𝐹‘𝑦) = (𝐹‘𝑗)) |
| 5 | 3 | imaeq2d 5009 |
. . . . . 6
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → (𝐹 “ 𝑦) = (𝐹 “ 𝑗)) |
| 6 | 4, 5 | eleq12d 2267 |
. . . . 5
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → ((𝐹‘𝑦) ∈ (𝐹 “ 𝑦) ↔ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗))) |
| 7 | | simpl 109 |
. . . . 5
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → 𝑥 = 𝑓) |
| 8 | 7 | dmeqd 4868 |
. . . . . . . 8
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → dom 𝑥 = dom 𝑓) |
| 9 | 8, 4 | opeq12d 3816 |
. . . . . . 7
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → 〈dom 𝑥, (𝐹‘𝑦)〉 = 〈dom 𝑓, (𝐹‘𝑗)〉) |
| 10 | 9 | sneqd 3635 |
. . . . . 6
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → {〈dom 𝑥, (𝐹‘𝑦)〉} = {〈dom 𝑓, (𝐹‘𝑗)〉}) |
| 11 | 7, 10 | uneq12d 3318 |
. . . . 5
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}) = (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉})) |
| 12 | 6, 7, 11 | ifbieq12d 3587 |
. . . 4
⊢ ((𝑥 = 𝑓 ∧ 𝑦 = 𝑗) → if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉})) = if((𝐹‘𝑗) ∈ (𝐹 “ 𝑗), 𝑓, (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}))) |
| 13 | 12 | adantl 277 |
. . 3
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
(𝑥 = 𝑓 ∧ 𝑦 = 𝑗)) → if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉})) = if((𝐹‘𝑗) ∈ (𝐹 “ 𝑗), 𝑓, (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}))) |
| 14 | | ssrab2 3268 |
. . . 4
⊢ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω}
⊆ (𝐴
↑pm ω) |
| 15 | | simprl 529 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈
ω}) |
| 16 | 14, 15 | sselid 3181 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
𝑓 ∈ (𝐴 ↑pm
ω)) |
| 17 | | simprr 531 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
𝑗 ∈
ω) |
| 18 | | simplrl 535 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
(𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈
ω}) |
| 19 | | dmeq 4866 |
. . . . . 6
⊢ (𝑔 = (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}) → dom 𝑔 = dom (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉})) |
| 20 | 19 | eleq1d 2265 |
. . . . 5
⊢ (𝑔 = (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}) → (dom 𝑔 ∈ ω ↔ dom (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}) ∈ ω)) |
| 21 | | omex 4629 |
. . . . . . . 8
⊢ ω
∈ V |
| 22 | | ennnfonelemh.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| 23 | | focdmex 6172 |
. . . . . . . 8
⊢ (ω
∈ V → (𝐹:ω–onto→𝐴 → 𝐴 ∈ V)) |
| 24 | 21, 22, 23 | mpsyl 65 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ V) |
| 25 | 24 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → 𝐴 ∈ V) |
| 26 | 21 | a1i 9 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → ω ∈ V) |
| 27 | | simplrl 535 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → 𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈
ω}) |
| 28 | | elrabi 2917 |
. . . . . . . . . 10
⊢ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω}
→ 𝑓 ∈ (𝐴 ↑pm
ω)) |
| 29 | | elpmi 6726 |
. . . . . . . . . 10
⊢ (𝑓 ∈ (𝐴 ↑pm ω) →
(𝑓:dom 𝑓⟶𝐴 ∧ dom 𝑓 ⊆ ω)) |
| 30 | 28, 29 | syl 14 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω}
→ (𝑓:dom 𝑓⟶𝐴 ∧ dom 𝑓 ⊆ ω)) |
| 31 | 30 | simpld 112 |
. . . . . . . 8
⊢ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω}
→ 𝑓:dom 𝑓⟶𝐴) |
| 32 | 27, 31 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → 𝑓:dom 𝑓⟶𝐴) |
| 33 | | dmeq 4866 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑓 → dom 𝑔 = dom 𝑓) |
| 34 | 33 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑓 → (dom 𝑔 ∈ ω ↔ dom 𝑓 ∈ ω)) |
| 35 | 34 | elrab 2920 |
. . . . . . . . 9
⊢ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω}
↔ (𝑓 ∈ (𝐴 ↑pm
ω) ∧ dom 𝑓 ∈
ω)) |
| 36 | 35 | simprbi 275 |
. . . . . . . 8
⊢ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω}
→ dom 𝑓 ∈
ω) |
| 37 | 27, 36 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → dom 𝑓 ∈ ω) |
| 38 | | nnord 4648 |
. . . . . . . . 9
⊢ (dom
𝑓 ∈ ω → Ord
dom 𝑓) |
| 39 | 37, 38 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → Ord dom 𝑓) |
| 40 | | ordirr 4578 |
. . . . . . . 8
⊢ (Ord dom
𝑓 → ¬ dom 𝑓 ∈ dom 𝑓) |
| 41 | 39, 40 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → ¬ dom 𝑓 ∈ dom 𝑓) |
| 42 | 22 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
𝐹:ω–onto→𝐴) |
| 43 | | fof 5480 |
. . . . . . . . . 10
⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) |
| 44 | 42, 43 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
𝐹:ω⟶𝐴) |
| 45 | 44, 17 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
(𝐹‘𝑗) ∈ 𝐴) |
| 46 | 45 | adantr 276 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → (𝐹‘𝑗) ∈ 𝐴) |
| 47 | | fsnunf 5762 |
. . . . . . 7
⊢ ((𝑓:dom 𝑓⟶𝐴 ∧ (dom 𝑓 ∈ ω ∧ ¬ dom 𝑓 ∈ dom 𝑓) ∧ (𝐹‘𝑗) ∈ 𝐴) → (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴) |
| 48 | 32, 37, 41, 46, 47 | syl121anc 1254 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴) |
| 49 | | df-suc 4406 |
. . . . . . . . 9
⊢ suc dom
𝑓 = (dom 𝑓 ∪ {dom 𝑓}) |
| 50 | | peano2 4631 |
. . . . . . . . 9
⊢ (dom
𝑓 ∈ ω → suc
dom 𝑓 ∈
ω) |
| 51 | 49, 50 | eqeltrrid 2284 |
. . . . . . . 8
⊢ (dom
𝑓 ∈ ω →
(dom 𝑓 ∪ {dom 𝑓}) ∈
ω) |
| 52 | 37, 51 | syl 14 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ∈ ω) |
| 53 | | elomssom 4641 |
. . . . . . 7
⊢ ((dom
𝑓 ∪ {dom 𝑓}) ∈ ω → (dom
𝑓 ∪ {dom 𝑓}) ⊆
ω) |
| 54 | 52, 53 | syl 14 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω) |
| 55 | | elpm2r 6725 |
. . . . . 6
⊢ (((𝐴 ∈ V ∧ ω ∈
V) ∧ ((𝑓 ∪
{〈dom 𝑓, (𝐹‘𝑗)〉}):(dom 𝑓 ∪ {dom 𝑓})⟶𝐴 ∧ (dom 𝑓 ∪ {dom 𝑓}) ⊆ ω)) → (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}) ∈ (𝐴 ↑pm
ω)) |
| 56 | 25, 26, 48, 54, 55 | syl22anc 1250 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}) ∈ (𝐴 ↑pm
ω)) |
| 57 | 48 | fdmd 5414 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → dom (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}) = (dom 𝑓 ∪ {dom 𝑓})) |
| 58 | 57, 52 | eqeltrd 2273 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → dom (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}) ∈ ω) |
| 59 | 20, 56, 58 | elrabd 2922 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) ∧
¬ (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) → (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈
ω}) |
| 60 | | ennnfonelemh.dceq |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 61 | 60 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| 62 | 61, 42, 17 | ennnfonelemdc 12616 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
DECID (𝐹‘𝑗) ∈ (𝐹 “ 𝑗)) |
| 63 | 18, 59, 62 | ifcldadc 3590 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
if((𝐹‘𝑗) ∈ (𝐹 “ 𝑗), 𝑓, (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉})) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈
ω}) |
| 64 | 2, 13, 16, 17, 63 | ovmpod 6050 |
. 2
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
(𝑓𝐺𝑗) = if((𝐹‘𝑗) ∈ (𝐹 “ 𝑗), 𝑓, (𝑓 ∪ {〈dom 𝑓, (𝐹‘𝑗)〉}))) |
| 65 | 64, 63 | eqeltrd 2273 |
1
⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈ ω} ∧
𝑗 ∈ ω)) →
(𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣
dom 𝑔 ∈
ω}) |