ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qexpz GIF version

Theorem qexpz 12861
Description: If a power of a rational number is an integer, then the number is an integer. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
qexpz ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)

Proof of Theorem qexpz
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0z 9445 . . . 4 0 ∈ ℤ
2 eleq1 2292 . . . 4 (𝐴 = 0 → (𝐴 ∈ ℤ ↔ 0 ∈ ℤ))
31, 2mpbiri 168 . . 3 (𝐴 = 0 → 𝐴 ∈ ℤ)
43adantl 277 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 = 0) → 𝐴 ∈ ℤ)
5 simpll2 1061 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
65nncnd 9112 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℂ)
76mul01d 8527 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) = 0)
8 simpr 110 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
9 simpll3 1062 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
10 simpll1 1060 . . . . . . . . . . . 12 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℚ)
11 qcn 9817 . . . . . . . . . . . 12 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
1210, 11syl 14 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℂ)
13 simplr 528 . . . . . . . . . . . 12 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ≠ 0)
14 zq 9809 . . . . . . . . . . . . . 14 (0 ∈ ℤ → 0 ∈ ℚ)
151, 14ax-mp 5 . . . . . . . . . . . . 13 0 ∈ ℚ
16 qapne 9822 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
1710, 15, 16sylancl 413 . . . . . . . . . . . 12 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
1813, 17mpbird 167 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 # 0)
195nnzd 9556 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
2012, 18, 19expap0d 10888 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) # 0)
21 0zd 9446 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℤ)
22 zapne 9509 . . . . . . . . . . 11 (((𝐴𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴𝑁) # 0 ↔ (𝐴𝑁) ≠ 0))
239, 21, 22syl2anc 411 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) # 0 ↔ (𝐴𝑁) ≠ 0))
2420, 23mpbid 147 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ≠ 0)
25 pczcl 12807 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ ((𝐴𝑁) ∈ ℤ ∧ (𝐴𝑁) ≠ 0)) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
268, 9, 24, 25syl12anc 1269 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
2726nn0ge0d 9413 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt (𝐴𝑁)))
28 pcexp 12818 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
298, 10, 13, 19, 28syl121anc 1276 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
3027, 29breqtrd 4108 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑁 · (𝑝 pCnt 𝐴)))
317, 30eqbrtrd 4104 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴)))
32 0red 8135 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℝ)
33 pcqcl 12815 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℤ)
348, 10, 13, 33syl12anc 1269 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℤ)
3534zred 9557 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
365nnred 9111 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℝ)
375nngt0d 9142 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 < 𝑁)
38 lemul2 8992 . . . . . 6 ((0 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
3932, 35, 36, 37, 38syl112anc 1275 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
4031, 39mpbird 167 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt 𝐴))
4140ralrimiva 2603 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))
42 simpl1 1024 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℚ)
43 pcz 12841 . . . 4 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
4442, 43syl 14 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
4541, 44mpbird 167 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
46 simp1 1021 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℚ)
47 qdceq 10451 . . . 4 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → DECID 𝐴 = 0)
4846, 15, 47sylancl 413 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → DECID 𝐴 = 0)
49 dcne 2411 . . 3 (DECID 𝐴 = 0 ↔ (𝐴 = 0 ∨ 𝐴 ≠ 0))
5048, 49sylib 122 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → (𝐴 = 0 ∨ 𝐴 ≠ 0))
514, 45, 50mpjaodan 803 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wral 2508   class class class wbr 4082  (class class class)co 5994  cc 7985  cr 7986  0cc0 7987   · cmul 7992   < clt 8169  cle 8170   # cap 8716  cn 9098  0cn0 9357  cz 9434  cq 9802  cexp 10747  cprime 12615   pCnt cpc 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-xnn0 9421  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461  df-prm 12616  df-pc 12794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator