ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qexpz GIF version

Theorem qexpz 12282
Description: If a power of a rational number is an integer, then the number is an integer. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
qexpz ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)

Proof of Theorem qexpz
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0z 9202 . . . 4 0 ∈ ℤ
2 eleq1 2229 . . . 4 (𝐴 = 0 → (𝐴 ∈ ℤ ↔ 0 ∈ ℤ))
31, 2mpbiri 167 . . 3 (𝐴 = 0 → 𝐴 ∈ ℤ)
43adantl 275 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 = 0) → 𝐴 ∈ ℤ)
5 simpll2 1027 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
65nncnd 8871 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℂ)
76mul01d 8291 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) = 0)
8 simpr 109 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
9 simpll3 1028 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
10 simpll1 1026 . . . . . . . . . . . 12 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℚ)
11 qcn 9572 . . . . . . . . . . . 12 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
1210, 11syl 14 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℂ)
13 simplr 520 . . . . . . . . . . . 12 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 ≠ 0)
14 zq 9564 . . . . . . . . . . . . . 14 (0 ∈ ℤ → 0 ∈ ℚ)
151, 14ax-mp 5 . . . . . . . . . . . . 13 0 ∈ ℚ
16 qapne 9577 . . . . . . . . . . . . 13 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
1710, 15, 16sylancl 410 . . . . . . . . . . . 12 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
1813, 17mpbird 166 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝐴 # 0)
195nnzd 9312 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℤ)
2012, 18, 19expap0d 10594 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) # 0)
21 0zd 9203 . . . . . . . . . . 11 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℤ)
22 zapne 9265 . . . . . . . . . . 11 (((𝐴𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴𝑁) # 0 ↔ (𝐴𝑁) ≠ 0))
239, 21, 22syl2anc 409 . . . . . . . . . 10 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) # 0 ↔ (𝐴𝑁) ≠ 0))
2420, 23mpbid 146 . . . . . . . . 9 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ≠ 0)
25 pczcl 12230 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ ((𝐴𝑁) ∈ ℤ ∧ (𝐴𝑁) ≠ 0)) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
268, 9, 24, 25syl12anc 1226 . . . . . . . 8 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) ∈ ℕ0)
2726nn0ge0d 9170 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt (𝐴𝑁)))
28 pcexp 12241 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
298, 10, 13, 19, 28syl121anc 1233 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt (𝐴𝑁)) = (𝑁 · (𝑝 pCnt 𝐴)))
3027, 29breqtrd 4008 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑁 · (𝑝 pCnt 𝐴)))
317, 30eqbrtrd 4004 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴)))
32 0red 7900 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ∈ ℝ)
33 pcqcl 12238 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑝 pCnt 𝐴) ∈ ℤ)
348, 10, 13, 33syl12anc 1226 . . . . . . 7 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℤ)
3534zred 9313 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
365nnred 8870 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℝ)
375nngt0d 8901 . . . . . 6 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 < 𝑁)
38 lemul2 8752 . . . . . 6 ((0 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
3932, 35, 36, 37, 38syl112anc 1232 . . . . 5 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → (0 ≤ (𝑝 pCnt 𝐴) ↔ (𝑁 · 0) ≤ (𝑁 · (𝑝 pCnt 𝐴))))
4031, 39mpbird 166 . . . 4 ((((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) ∧ 𝑝 ∈ ℙ) → 0 ≤ (𝑝 pCnt 𝐴))
4140ralrimiva 2539 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴))
42 simpl1 990 . . . 4 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℚ)
43 pcz 12263 . . . 4 (𝐴 ∈ ℚ → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
4442, 43syl 14 . . 3 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℤ ↔ ∀𝑝 ∈ ℙ 0 ≤ (𝑝 pCnt 𝐴)))
4541, 44mpbird 166 . 2 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
46 simp1 987 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℚ)
47 qdceq 10182 . . . 4 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → DECID 𝐴 = 0)
4846, 15, 47sylancl 410 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → DECID 𝐴 = 0)
49 dcne 2347 . . 3 (DECID 𝐴 = 0 ↔ (𝐴 = 0 ∨ 𝐴 ≠ 0))
5048, 49sylib 121 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → (𝐴 = 0 ∨ 𝐴 ≠ 0))
514, 45, 50mpjaodan 788 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ ℕ ∧ (𝐴𝑁) ∈ ℤ) → 𝐴 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  w3a 968   = wceq 1343  wcel 2136  wne 2336  wral 2444   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753   · cmul 7758   < clt 7933  cle 7934   # cap 8479  cn 8857  0cn0 9114  cz 9191  cq 9557  cexp 10454  cprime 12039   pCnt cpc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-xnn0 9178  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-prm 12040  df-pc 12217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator