Step | Hyp | Ref
| Expression |
1 | | elq 9556 |
. . 3
⊢ (𝐴 ∈ ℚ ↔
∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝐴 = (𝑥 / 𝑦)) |
2 | | zcn 9192 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
3 | 2 | ad2antrl 482 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈
ℂ) |
4 | | nncn 8861 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
5 | 4 | ad2antll 483 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈
ℂ) |
6 | | nnap0 8882 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ → 𝑦 # 0) |
7 | 6 | ad2antll 483 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 # 0) |
8 | 3, 5, 7 | divnegapd 8695 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → -(𝑥 / 𝑦) = (-𝑥 / 𝑦)) |
9 | 8 | oveq2d 5857 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (-𝑥 / 𝑦))) |
10 | | neg0 8140 |
. . . . . . . . . 10
⊢ -0 =
0 |
11 | | simpr 109 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → 𝑥 = 0) |
12 | 11 | negeqd 8089 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → -𝑥 = -0) |
13 | 10, 12, 11 | 3eqtr4a 2224 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → -𝑥 = 𝑥) |
14 | 13 | oveq1d 5856 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → (-𝑥 / 𝑦) = (𝑥 / 𝑦)) |
15 | 14 | oveq2d 5857 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 = 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦))) |
16 | | simpll 519 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑃 ∈
ℙ) |
17 | | simplrl 525 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑥 ∈
ℤ) |
18 | 17 | znegcld 9311 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → -𝑥 ∈
ℤ) |
19 | | simpr 109 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑥 ≠ 0) |
20 | 2 | negne0bd 8198 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℤ → (𝑥 ≠ 0 ↔ -𝑥 ≠ 0)) |
21 | 17, 20 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑥 ≠ 0 ↔ -𝑥 ≠ 0)) |
22 | 19, 21 | mpbid 146 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → -𝑥 ≠ 0) |
23 | | eqid 2165 |
. . . . . . . . . . . 12
⊢
sup({𝑦 ∈
ℕ0 ∣ (𝑃↑𝑦) ∥ -𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ -𝑥}, ℝ, < ) |
24 | 23 | pczpre 12225 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (-𝑥 ∈ ℤ ∧ -𝑥 ≠ 0)) → (𝑃 pCnt -𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ -𝑥}, ℝ, < )) |
25 | 16, 18, 22, 24 | syl12anc 1226 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt -𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ -𝑥}, ℝ, < )) |
26 | | eqid 2165 |
. . . . . . . . . . . . 13
⊢
sup({𝑦 ∈
ℕ0 ∣ (𝑃↑𝑦) ∥ 𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ 𝑥}, ℝ, < ) |
27 | 26 | pczpre 12225 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ 𝑥}, ℝ, < )) |
28 | | prmz 12039 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
29 | | zexpcl 10466 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ ℤ ∧ 𝑦 ∈ ℕ0)
→ (𝑃↑𝑦) ∈
ℤ) |
30 | 28, 29 | sylan 281 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0)
→ (𝑃↑𝑦) ∈
ℤ) |
31 | | simpl 108 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) → 𝑥 ∈
ℤ) |
32 | | dvdsnegb 11744 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑃↑𝑦) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑃↑𝑦) ∥ 𝑥 ↔ (𝑃↑𝑦) ∥ -𝑥)) |
33 | 30, 31, 32 | syl2an 287 |
. . . . . . . . . . . . . . 15
⊢ (((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ0)
∧ (𝑥 ∈ ℤ
∧ 𝑥 ≠ 0)) →
((𝑃↑𝑦) ∥ 𝑥 ↔ (𝑃↑𝑦) ∥ -𝑥)) |
34 | 33 | an32s 558 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃↑𝑦) ∥ 𝑥 ↔ (𝑃↑𝑦) ∥ -𝑥)) |
35 | 34 | rabbidva 2713 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → {𝑦 ∈ ℕ0
∣ (𝑃↑𝑦) ∥ 𝑥} = {𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ -𝑥}) |
36 | 35 | supeq1d 6948 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → sup({𝑦 ∈ ℕ0
∣ (𝑃↑𝑦) ∥ 𝑥}, ℝ, < ) = sup({𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ -𝑥}, ℝ, < )) |
37 | 27, 36 | eqtrd 2198 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0)) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ -𝑥}, ℝ, < )) |
38 | 16, 17, 19, 37 | syl12anc 1226 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt 𝑥) = sup({𝑦 ∈ ℕ0 ∣ (𝑃↑𝑦) ∥ -𝑥}, ℝ, < )) |
39 | 25, 38 | eqtr4d 2201 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt -𝑥) = (𝑃 pCnt 𝑥)) |
40 | 39 | oveq1d 5856 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
41 | | simplrr 526 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → 𝑦 ∈
ℕ) |
42 | | pcdiv 12230 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (-𝑥 ∈ ℤ ∧ -𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (-𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦))) |
43 | 16, 18, 22, 41, 42 | syl121anc 1233 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = ((𝑃 pCnt -𝑥) − (𝑃 pCnt 𝑦))) |
44 | | pcdiv 12230 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑥 ≠ 0) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
45 | 16, 17, 19, 41, 44 | syl121anc 1233 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (𝑥 / 𝑦)) = ((𝑃 pCnt 𝑥) − (𝑃 pCnt 𝑦))) |
46 | 40, 43, 45 | 3eqtr4d 2208 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑥 ≠ 0) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦))) |
47 | | simprl 521 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈
ℤ) |
48 | | 0zd 9199 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 0
∈ ℤ) |
49 | | zdceq 9262 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑥 = 0) |
50 | 47, 48, 49 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) →
DECID 𝑥 =
0) |
51 | | dcne 2346 |
. . . . . . . 8
⊢
(DECID 𝑥 = 0 ↔ (𝑥 = 0 ∨ 𝑥 ≠ 0)) |
52 | 50, 51 | sylib 121 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 = 0 ∨ 𝑥 ≠ 0)) |
53 | 15, 46, 52 | mpjaodan 788 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt (-𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦))) |
54 | 9, 53 | eqtrd 2198 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦))) |
55 | | negeq 8087 |
. . . . . . 7
⊢ (𝐴 = (𝑥 / 𝑦) → -𝐴 = -(𝑥 / 𝑦)) |
56 | 55 | oveq2d 5857 |
. . . . . 6
⊢ (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt -(𝑥 / 𝑦))) |
57 | | oveq2 5849 |
. . . . . 6
⊢ (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt 𝐴) = (𝑃 pCnt (𝑥 / 𝑦))) |
58 | 56, 57 | eqeq12d 2180 |
. . . . 5
⊢ (𝐴 = (𝑥 / 𝑦) → ((𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴) ↔ (𝑃 pCnt -(𝑥 / 𝑦)) = (𝑃 pCnt (𝑥 / 𝑦)))) |
59 | 54, 58 | syl5ibrcom 156 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))) |
60 | 59 | rexlimdvva 2590 |
. . 3
⊢ (𝑃 ∈ ℙ →
(∃𝑥 ∈ ℤ
∃𝑦 ∈ ℕ
𝐴 = (𝑥 / 𝑦) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))) |
61 | 1, 60 | syl5bi 151 |
. 2
⊢ (𝑃 ∈ ℙ → (𝐴 ∈ ℚ → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴))) |
62 | 61 | imp 123 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ) → (𝑃 pCnt -𝐴) = (𝑃 pCnt 𝐴)) |