ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcaddlem GIF version

Theorem pcaddlem 12604
Description: Lemma for pcadd 12605. The original numbers 𝐴 and 𝐵 have been decomposed using the prime count function as (𝑃𝑀) · (𝑅 / 𝑆) where 𝑅, 𝑆 are both not divisible by 𝑃 and 𝑀 = (𝑃 pCnt 𝐴), and similarly for 𝐵. (Contributed by Mario Carneiro, 9-Sep-2014.)
Hypotheses
Ref Expression
pcaddlem.1 (𝜑𝑃 ∈ ℙ)
pcaddlem.2 (𝜑𝐴 = ((𝑃𝑀) · (𝑅 / 𝑆)))
pcaddlem.3 (𝜑𝐵 = ((𝑃𝑁) · (𝑇 / 𝑈)))
pcaddlem.4 (𝜑𝑁 ∈ (ℤ𝑀))
pcaddlem.5 (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃𝑅))
pcaddlem.6 (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃𝑆))
pcaddlem.7 (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃𝑇))
pcaddlem.8 (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃𝑈))
Assertion
Ref Expression
pcaddlem (𝜑𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))

Proof of Theorem pcaddlem
StepHypRef Expression
1 pcaddlem.4 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9652 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
43zred 9494 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
54rexrd 8121 . . . . . 6 (𝜑𝑀 ∈ ℝ*)
6 pnfge 9910 . . . . . 6 (𝑀 ∈ ℝ*𝑀 ≤ +∞)
75, 6syl 14 . . . . 5 (𝜑𝑀 ≤ +∞)
8 pcaddlem.1 . . . . . 6 (𝜑𝑃 ∈ ℙ)
9 pc0 12569 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
108, 9syl 14 . . . . 5 (𝜑 → (𝑃 pCnt 0) = +∞)
117, 10breqtrrd 4071 . . . 4 (𝜑𝑀 ≤ (𝑃 pCnt 0))
1211adantr 276 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) = 0) → 𝑀 ≤ (𝑃 pCnt 0))
13 simpr 110 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) = 0) → (𝐴 + 𝐵) = 0)
1413oveq2d 5959 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) = 0) → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑃 pCnt 0))
1512, 14breqtrrd 4071 . 2 ((𝜑 ∧ (𝐴 + 𝐵) = 0) → 𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))
164adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ∈ ℝ)
17 prmnn 12374 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
188, 17syl 14 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℕ)
1918nncnd 9049 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℂ)
2018nnap0d 9081 . . . . . . . . . . . 12 (𝜑𝑃 # 0)
21 eluzelz 9656 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
221, 21syl 14 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℤ)
2322, 3zsubcld 9499 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑀) ∈ ℤ)
2419, 20, 23expclzapd 10821 . . . . . . . . . . 11 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℂ)
25 pcaddlem.7 . . . . . . . . . . . . 13 (𝜑 → (𝑇 ∈ ℤ ∧ ¬ 𝑃𝑇))
2625simpld 112 . . . . . . . . . . . 12 (𝜑𝑇 ∈ ℤ)
2726zcnd 9495 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
28 pcaddlem.8 . . . . . . . . . . . . 13 (𝜑 → (𝑈 ∈ ℕ ∧ ¬ 𝑃𝑈))
2928simpld 112 . . . . . . . . . . . 12 (𝜑𝑈 ∈ ℕ)
3029nncnd 9049 . . . . . . . . . . 11 (𝜑𝑈 ∈ ℂ)
3129nnap0d 9081 . . . . . . . . . . 11 (𝜑𝑈 # 0)
3224, 27, 30, 31divassapd 8898 . . . . . . . . . 10 (𝜑 → (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈) = ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))
3332oveq2d 5959 . . . . . . . . 9 (𝜑 → ((𝑅 / 𝑆) + (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈)) = ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
34 pcaddlem.5 . . . . . . . . . . . 12 (𝜑 → (𝑅 ∈ ℤ ∧ ¬ 𝑃𝑅))
3534simpld 112 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℤ)
3635zcnd 9495 . . . . . . . . . 10 (𝜑𝑅 ∈ ℂ)
3724, 27mulcld 8092 . . . . . . . . . 10 (𝜑 → ((𝑃↑(𝑁𝑀)) · 𝑇) ∈ ℂ)
38 pcaddlem.6 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∈ ℕ ∧ ¬ 𝑃𝑆))
3938simpld 112 . . . . . . . . . . . 12 (𝜑𝑆 ∈ ℕ)
4039nncnd 9049 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℂ)
4139nnap0d 9081 . . . . . . . . . . 11 (𝜑𝑆 # 0)
4240, 41jca 306 . . . . . . . . . 10 (𝜑 → (𝑆 ∈ ℂ ∧ 𝑆 # 0))
4330, 31jca 306 . . . . . . . . . 10 (𝜑 → (𝑈 ∈ ℂ ∧ 𝑈 # 0))
44 divadddivap 8799 . . . . . . . . . 10 (((𝑅 ∈ ℂ ∧ ((𝑃↑(𝑁𝑀)) · 𝑇) ∈ ℂ) ∧ ((𝑆 ∈ ℂ ∧ 𝑆 # 0) ∧ (𝑈 ∈ ℂ ∧ 𝑈 # 0))) → ((𝑅 / 𝑆) + (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈)) = (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)))
4536, 37, 42, 43, 44syl22anc 1250 . . . . . . . . 9 (𝜑 → ((𝑅 / 𝑆) + (((𝑃↑(𝑁𝑀)) · 𝑇) / 𝑈)) = (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)))
4633, 45eqtr3d 2239 . . . . . . . 8 (𝜑 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)))
4746oveq2d 5959 . . . . . . 7 (𝜑 → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))))
4847adantr 276 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))))
498adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑃 ∈ ℙ)
5029nnzd 9493 . . . . . . . . . 10 (𝜑𝑈 ∈ ℤ)
5135, 50zmulcld 9500 . . . . . . . . 9 (𝜑 → (𝑅 · 𝑈) ∈ ℤ)
52 uznn0sub 9679 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ𝑀) → (𝑁𝑀) ∈ ℕ0)
531, 52syl 14 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑀) ∈ ℕ0)
5418, 53nnexpcld 10838 . . . . . . . . . . . 12 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℕ)
5554nnzd 9493 . . . . . . . . . . 11 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℤ)
5655, 26zmulcld 9500 . . . . . . . . . 10 (𝜑 → ((𝑃↑(𝑁𝑀)) · 𝑇) ∈ ℤ)
5739nnzd 9493 . . . . . . . . . 10 (𝜑𝑆 ∈ ℤ)
5856, 57zmulcld 9500 . . . . . . . . 9 (𝜑 → (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆) ∈ ℤ)
5951, 58zaddcld 9498 . . . . . . . 8 (𝜑 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ)
6059adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ)
6119, 20, 3expclzapd 10821 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑀) ∈ ℂ)
6261mul01d 8464 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑀) · 0) = 0)
63 oveq2 5951 . . . . . . . . . . . . 13 (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = ((𝑃𝑀) · 0))
6463eqeq1d 2213 . . . . . . . . . . . 12 (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = 0 ↔ ((𝑃𝑀) · 0) = 0))
6562, 64syl5ibrcom 157 . . . . . . . . . . 11 (𝜑 → (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) = 0 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = 0))
6665necon3d 2419 . . . . . . . . . 10 (𝜑 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ≠ 0 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0))
6736, 40, 41divclapd 8862 . . . . . . . . . . . . 13 (𝜑 → (𝑅 / 𝑆) ∈ ℂ)
6827, 30, 31divclapd 8862 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 / 𝑈) ∈ ℂ)
6924, 68mulcld 8092 . . . . . . . . . . . . 13 (𝜑 → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℂ)
7061, 67, 69adddid 8096 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (((𝑃𝑀) · (𝑅 / 𝑆)) + ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))))
71 pcaddlem.2 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝑃𝑀) · (𝑅 / 𝑆)))
72 pcaddlem.3 . . . . . . . . . . . . . 14 (𝜑𝐵 = ((𝑃𝑁) · (𝑇 / 𝑈)))
733zcnd 9495 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ ℂ)
7422zcnd 9495 . . . . . . . . . . . . . . . . . 18 (𝜑𝑁 ∈ ℂ)
7573, 74pncan3d 8385 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + (𝑁𝑀)) = 𝑁)
7675oveq2d 5959 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑀 + (𝑁𝑀))) = (𝑃𝑁))
77 expaddzap 10726 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑀 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ)) → (𝑃↑(𝑀 + (𝑁𝑀))) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
7819, 20, 3, 23, 77syl22anc 1250 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃↑(𝑀 + (𝑁𝑀))) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
7976, 78eqtr3d 2239 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃𝑁) = ((𝑃𝑀) · (𝑃↑(𝑁𝑀))))
8079oveq1d 5958 . . . . . . . . . . . . . 14 (𝜑 → ((𝑃𝑁) · (𝑇 / 𝑈)) = (((𝑃𝑀) · (𝑃↑(𝑁𝑀))) · (𝑇 / 𝑈)))
8161, 24, 68mulassd 8095 . . . . . . . . . . . . . 14 (𝜑 → (((𝑃𝑀) · (𝑃↑(𝑁𝑀))) · (𝑇 / 𝑈)) = ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
8272, 80, 813eqtrd 2241 . . . . . . . . . . . . 13 (𝜑𝐵 = ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))
8371, 82oveq12d 5961 . . . . . . . . . . . 12 (𝜑 → (𝐴 + 𝐵) = (((𝑃𝑀) · (𝑅 / 𝑆)) + ((𝑃𝑀) · ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))))
8470, 83eqtr4d 2240 . . . . . . . . . . 11 (𝜑 → ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝐴 + 𝐵))
8584neeq1d 2393 . . . . . . . . . 10 (𝜑 → (((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ≠ 0 ↔ (𝐴 + 𝐵) ≠ 0))
8646neeq1d 2393 . . . . . . . . . 10 (𝜑 → (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0 ↔ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0))
8766, 85, 863imtr3d 202 . . . . . . . . 9 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0))
8839, 29nnmulcld 9084 . . . . . . . . . . . . 13 (𝜑 → (𝑆 · 𝑈) ∈ ℕ)
8988nncnd 9049 . . . . . . . . . . . 12 (𝜑 → (𝑆 · 𝑈) ∈ ℂ)
9040, 30, 41, 31mulap0d 8730 . . . . . . . . . . . 12 (𝜑 → (𝑆 · 𝑈) # 0)
9189, 90div0apd 8859 . . . . . . . . . . 11 (𝜑 → (0 / (𝑆 · 𝑈)) = 0)
92 oveq1 5950 . . . . . . . . . . . 12 (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = (0 / (𝑆 · 𝑈)))
9392eqeq1d 2213 . . . . . . . . . . 11 (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → ((((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = 0 ↔ (0 / (𝑆 · 𝑈)) = 0))
9491, 93syl5ibrcom 157 . . . . . . . . . 10 (𝜑 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) = 0 → (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) = 0))
9594necon3d 2419 . . . . . . . . 9 (𝜑 → ((((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈)) ≠ 0 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0))
9687, 95syld 45 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0))
9796imp 124 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0)
9888adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑆 · 𝑈) ∈ ℕ)
99 pcdiv 12567 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ ∧ ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0) ∧ (𝑆 · 𝑈) ∈ ℕ) → (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))))
10049, 60, 97, 98, 99syl121anc 1254 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) / (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))))
10139nnne0d 9080 . . . . . . . . . . 11 (𝜑𝑆 ≠ 0)
10229nnne0d 9080 . . . . . . . . . . 11 (𝜑𝑈 ≠ 0)
103 pcmul 12566 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ (𝑆 ∈ ℤ ∧ 𝑆 ≠ 0) ∧ (𝑈 ∈ ℤ ∧ 𝑈 ≠ 0)) → (𝑃 pCnt (𝑆 · 𝑈)) = ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)))
1048, 57, 101, 50, 102, 103syl122anc 1258 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (𝑆 · 𝑈)) = ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)))
10538simprd 114 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑃𝑆)
106 pceq0 12587 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑆 ∈ ℕ) → ((𝑃 pCnt 𝑆) = 0 ↔ ¬ 𝑃𝑆))
1078, 39, 106syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝑆) = 0 ↔ ¬ 𝑃𝑆))
108105, 107mpbird 167 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑆) = 0)
10928simprd 114 . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑃𝑈)
110 pceq0 12587 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑈 ∈ ℕ) → ((𝑃 pCnt 𝑈) = 0 ↔ ¬ 𝑃𝑈))
1118, 29, 110syl2anc 411 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 pCnt 𝑈) = 0 ↔ ¬ 𝑃𝑈))
112109, 111mpbird 167 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑈) = 0)
113108, 112oveq12d 5961 . . . . . . . . . . 11 (𝜑 → ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)) = (0 + 0))
114 00id 8212 . . . . . . . . . . 11 (0 + 0) = 0
115113, 114eqtrdi 2253 . . . . . . . . . 10 (𝜑 → ((𝑃 pCnt 𝑆) + (𝑃 pCnt 𝑈)) = 0)
116104, 115eqtrd 2237 . . . . . . . . 9 (𝜑 → (𝑃 pCnt (𝑆 · 𝑈)) = 0)
117116oveq2d 5959 . . . . . . . 8 (𝜑 → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0))
118117adantr 276 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0))
119 pczcl 12563 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ (((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ∈ ℤ ∧ ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆)) ≠ 0)) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℕ0)
12049, 60, 97, 119syl12anc 1247 . . . . . . . . 9 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℕ0)
121120nn0cnd 9349 . . . . . . . 8 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) ∈ ℂ)
122121subid1d 8371 . . . . . . 7 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − 0) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
123118, 122eqtrd 2237 . . . . . 6 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))) − (𝑃 pCnt (𝑆 · 𝑈))) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
12448, 100, 1233eqtrd 2241 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) = (𝑃 pCnt ((𝑅 · 𝑈) + (((𝑃↑(𝑁𝑀)) · 𝑇) · 𝑆))))
125124, 120eqeltrd 2281 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ∈ ℕ0)
126 nn0addge1 9340 . . . 4 ((𝑀 ∈ ℝ ∧ (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)))) ∈ ℕ0) → 𝑀 ≤ (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
12716, 125, 126syl2anc 411 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ≤ (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
128 nnq 9753 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
12918, 128syl 14 . . . . . . 7 (𝜑𝑃 ∈ ℚ)
13018nnne0d 9080 . . . . . . 7 (𝜑𝑃 ≠ 0)
131 qexpclz 10703 . . . . . . 7 ((𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝑃𝑀) ∈ ℚ)
132129, 130, 3, 131syl3anc 1249 . . . . . 6 (𝜑 → (𝑃𝑀) ∈ ℚ)
133132adantr 276 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃𝑀) ∈ ℚ)
13419, 20, 3expap0d 10822 . . . . . . 7 (𝜑 → (𝑃𝑀) # 0)
135 0z 9382 . . . . . . . . 9 0 ∈ ℤ
136 zq 9746 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℚ)
137135, 136mp1i 10 . . . . . . . 8 (𝜑 → 0 ∈ ℚ)
138 qapne 9759 . . . . . . . 8 (((𝑃𝑀) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝑃𝑀) # 0 ↔ (𝑃𝑀) ≠ 0))
139132, 137, 138syl2anc 411 . . . . . . 7 (𝜑 → ((𝑃𝑀) # 0 ↔ (𝑃𝑀) ≠ 0))
140134, 139mpbid 147 . . . . . 6 (𝜑 → (𝑃𝑀) ≠ 0)
141140adantr 276 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃𝑀) ≠ 0)
142 znq 9744 . . . . . . . 8 ((𝑅 ∈ ℤ ∧ 𝑆 ∈ ℕ) → (𝑅 / 𝑆) ∈ ℚ)
14335, 39, 142syl2anc 411 . . . . . . 7 (𝜑 → (𝑅 / 𝑆) ∈ ℚ)
144 qexpclz 10703 . . . . . . . . 9 ((𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ∧ (𝑁𝑀) ∈ ℤ) → (𝑃↑(𝑁𝑀)) ∈ ℚ)
145129, 130, 23, 144syl3anc 1249 . . . . . . . 8 (𝜑 → (𝑃↑(𝑁𝑀)) ∈ ℚ)
146 znq 9744 . . . . . . . . 9 ((𝑇 ∈ ℤ ∧ 𝑈 ∈ ℕ) → (𝑇 / 𝑈) ∈ ℚ)
14726, 29, 146syl2anc 411 . . . . . . . 8 (𝜑 → (𝑇 / 𝑈) ∈ ℚ)
148 qmulcl 9757 . . . . . . . 8 (((𝑃↑(𝑁𝑀)) ∈ ℚ ∧ (𝑇 / 𝑈) ∈ ℚ) → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ)
149145, 147, 148syl2anc 411 . . . . . . 7 (𝜑 → ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ)
150 qaddcl 9755 . . . . . . 7 (((𝑅 / 𝑆) ∈ ℚ ∧ ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈)) ∈ ℚ) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
151143, 149, 150syl2anc 411 . . . . . 6 (𝜑 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
152151adantr 276 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ)
15385, 66sylbird 170 . . . . . 6 (𝜑 → ((𝐴 + 𝐵) ≠ 0 → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0))
154153imp 124 . . . . 5 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0)
155 pcqmul 12568 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝑃𝑀) ∈ ℚ ∧ (𝑃𝑀) ≠ 0) ∧ (((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ∈ ℚ ∧ ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))) ≠ 0)) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
15649, 133, 141, 152, 154, 155syl122anc 1258 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
15784oveq2d 5959 . . . . 5 (𝜑 → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑃 pCnt (𝐴 + 𝐵)))
158157adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt ((𝑃𝑀) · ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑃 pCnt (𝐴 + 𝐵)))
159 pcid 12589 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℤ) → (𝑃 pCnt (𝑃𝑀)) = 𝑀)
1608, 3, 159syl2anc 411 . . . . . 6 (𝜑 → (𝑃 pCnt (𝑃𝑀)) = 𝑀)
161160oveq1d 5958 . . . . 5 (𝜑 → ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
162161adantr 276 . . . 4 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → ((𝑃 pCnt (𝑃𝑀)) + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
163156, 158, 1623eqtr3d 2245 . . 3 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → (𝑃 pCnt (𝐴 + 𝐵)) = (𝑀 + (𝑃 pCnt ((𝑅 / 𝑆) + ((𝑃↑(𝑁𝑀)) · (𝑇 / 𝑈))))))
164127, 163breqtrrd 4071 . 2 ((𝜑 ∧ (𝐴 + 𝐵) ≠ 0) → 𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))
165 qmulcl 9757 . . . . . . 7 (((𝑃𝑀) ∈ ℚ ∧ (𝑅 / 𝑆) ∈ ℚ) → ((𝑃𝑀) · (𝑅 / 𝑆)) ∈ ℚ)
166132, 143, 165syl2anc 411 . . . . . 6 (𝜑 → ((𝑃𝑀) · (𝑅 / 𝑆)) ∈ ℚ)
16771, 166eqeltrd 2281 . . . . 5 (𝜑𝐴 ∈ ℚ)
168 qexpclz 10703 . . . . . . . 8 ((𝑃 ∈ ℚ ∧ 𝑃 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑃𝑁) ∈ ℚ)
169129, 130, 22, 168syl3anc 1249 . . . . . . 7 (𝜑 → (𝑃𝑁) ∈ ℚ)
170 qmulcl 9757 . . . . . . 7 (((𝑃𝑁) ∈ ℚ ∧ (𝑇 / 𝑈) ∈ ℚ) → ((𝑃𝑁) · (𝑇 / 𝑈)) ∈ ℚ)
171169, 147, 170syl2anc 411 . . . . . 6 (𝜑 → ((𝑃𝑁) · (𝑇 / 𝑈)) ∈ ℚ)
17272, 171eqeltrd 2281 . . . . 5 (𝜑𝐵 ∈ ℚ)
173 qaddcl 9755 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) ∈ ℚ)
174167, 172, 173syl2anc 411 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℚ)
175 qdceq 10385 . . . 4 (((𝐴 + 𝐵) ∈ ℚ ∧ 0 ∈ ℚ) → DECID (𝐴 + 𝐵) = 0)
176174, 137, 175syl2anc 411 . . 3 (𝜑DECID (𝐴 + 𝐵) = 0)
177 dcne 2386 . . 3 (DECID (𝐴 + 𝐵) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 + 𝐵) ≠ 0))
178176, 177sylib 122 . 2 (𝜑 → ((𝐴 + 𝐵) = 0 ∨ (𝐴 + 𝐵) ≠ 0))
17915, 164, 178mpjaodan 799 1 (𝜑𝑀 ≤ (𝑃 pCnt (𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1372  wcel 2175  wne 2375   class class class wbr 4043  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924   + caddc 7927   · cmul 7929  +∞cpnf 8103  *cxr 8105  cle 8107  cmin 8242   # cap 8653   / cdiv 8744  cn 9035  0cn0 9294  cz 9371  cuz 9647  cq 9739  cexp 10681  cdvds 12040  cprime 12371   pCnt cpc 12549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-dvds 12041  df-gcd 12217  df-prm 12372  df-pc 12550
This theorem is referenced by:  pcadd  12605
  Copyright terms: Public domain W3C validator