| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcid | GIF version | ||
| Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.) |
| Ref | Expression |
|---|---|
| pcid | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn 9456 | . 2 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
| 2 | pcidlem 12841 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | |
| 3 | prmnn 12627 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 4 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℕ) |
| 5 | 4 | nncnd 9120 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℂ) |
| 6 | 4 | nnap0d 9152 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 # 0) |
| 7 | simprl 529 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℝ) | |
| 8 | 7 | recnd 8171 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℂ) |
| 9 | nnnn0 9372 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
| 10 | 9 | ad2antll 491 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → -𝐴 ∈ ℕ0) |
| 11 | expineg2 10765 | . . . . . 6 ⊢ (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0)) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) | |
| 12 | 5, 6, 8, 10, 11 | syl22anc 1272 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) |
| 13 | 12 | oveq2d 6016 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = (𝑃 pCnt (1 / (𝑃↑-𝐴)))) |
| 14 | simpl 109 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℙ) | |
| 15 | 1zzd 9469 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ∈ ℤ) | |
| 16 | 1ne0 9174 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 17 | 16 | a1i 9 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ≠ 0) |
| 18 | 4, 10 | nnexpcld 10912 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑-𝐴) ∈ ℕ) |
| 19 | pcdiv 12820 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0) ∧ (𝑃↑-𝐴) ∈ ℕ) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) | |
| 20 | 14, 15, 17, 18, 19 | syl121anc 1276 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) |
| 21 | pc1 12823 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | |
| 22 | 21 | adantr 276 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt 1) = 0) |
| 23 | pcidlem 12841 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ -𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) | |
| 24 | 10, 23 | syldan 282 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) |
| 25 | 22, 24 | oveq12d 6018 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = (0 − -𝐴)) |
| 26 | df-neg 8316 | . . . . . . 7 ⊢ --𝐴 = (0 − -𝐴) | |
| 27 | 8 | negnegd 8444 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → --𝐴 = 𝐴) |
| 28 | 26, 27 | eqtr3id 2276 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (0 − -𝐴) = 𝐴) |
| 29 | 25, 28 | eqtrd 2262 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = 𝐴) |
| 30 | 20, 29 | eqtrd 2262 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = 𝐴) |
| 31 | 13, 30 | eqtrd 2262 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| 32 | 2, 31 | jaodan 802 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| 33 | 1, 32 | sylan2b 287 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 ℝcr 7994 0cc0 7995 1c1 7996 − cmin 8313 -cneg 8314 # cap 8724 / cdiv 8815 ℕcn 9106 ℕ0cn0 9365 ℤcz 9442 ↑cexp 10755 ℙcprime 12624 pCnt cpc 12802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-2o 6561 df-er 6678 df-en 6886 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-dvds 12294 df-gcd 12470 df-prm 12625 df-pc 12803 |
| This theorem is referenced by: pcprmpw2 12851 pcaddlem 12857 expnprm 12871 dvdsppwf1o 15657 lgsval2lem 15683 |
| Copyright terms: Public domain | W3C validator |