Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pcid | GIF version |
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
pcid | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0nn 9238 | . 2 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) | |
2 | pcidlem 12287 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) | |
3 | prmnn 12075 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
4 | 3 | adantr 276 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℕ) |
5 | 4 | nncnd 8904 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℂ) |
6 | 4 | nnap0d 8936 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 # 0) |
7 | simprl 529 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℝ) | |
8 | 7 | recnd 7960 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝐴 ∈ ℂ) |
9 | nnnn0 9154 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ → -𝐴 ∈ ℕ0) | |
10 | 9 | ad2antll 491 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → -𝐴 ∈ ℕ0) |
11 | expineg2 10497 | . . . . . 6 ⊢ (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0)) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) | |
12 | 5, 6, 8, 10, 11 | syl22anc 1239 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑𝐴) = (1 / (𝑃↑-𝐴))) |
13 | 12 | oveq2d 5881 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = (𝑃 pCnt (1 / (𝑃↑-𝐴)))) |
14 | simpl 109 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 𝑃 ∈ ℙ) | |
15 | 1zzd 9251 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ∈ ℤ) | |
16 | 1ne0 8958 | . . . . . . 7 ⊢ 1 ≠ 0 | |
17 | 16 | a1i 9 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → 1 ≠ 0) |
18 | 4, 10 | nnexpcld 10643 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃↑-𝐴) ∈ ℕ) |
19 | pcdiv 12267 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (1 ∈ ℤ ∧ 1 ≠ 0) ∧ (𝑃↑-𝐴) ∈ ℕ) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) | |
20 | 14, 15, 17, 18, 19 | syl121anc 1243 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴)))) |
21 | pc1 12270 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) | |
22 | 21 | adantr 276 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt 1) = 0) |
23 | pcidlem 12287 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ -𝐴 ∈ ℕ0) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) | |
24 | 10, 23 | syldan 282 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑-𝐴)) = -𝐴) |
25 | 22, 24 | oveq12d 5883 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = (0 − -𝐴)) |
26 | df-neg 8105 | . . . . . . 7 ⊢ --𝐴 = (0 − -𝐴) | |
27 | 8 | negnegd 8233 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → --𝐴 = 𝐴) |
28 | 26, 27 | eqtr3id 2222 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (0 − -𝐴) = 𝐴) |
29 | 25, 28 | eqtrd 2208 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → ((𝑃 pCnt 1) − (𝑃 pCnt (𝑃↑-𝐴))) = 𝐴) |
30 | 20, 29 | eqtrd 2208 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (1 / (𝑃↑-𝐴))) = 𝐴) |
31 | 13, 30 | eqtrd 2208 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ)) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
32 | 2, 31 | jaodan 797 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℕ0 ∨ (𝐴 ∈ ℝ ∧ -𝐴 ∈ ℕ))) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
33 | 1, 32 | sylan2b 287 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 pCnt (𝑃↑𝐴)) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 708 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 class class class wbr 3998 (class class class)co 5865 ℂcc 7784 ℝcr 7785 0cc0 7786 1c1 7787 − cmin 8102 -cneg 8103 # cap 8512 / cdiv 8601 ℕcn 8890 ℕ0cn0 9147 ℤcz 9224 ↑cexp 10487 ℙcprime 12072 pCnt cpc 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-isom 5217 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-1o 6407 df-2o 6408 df-er 6525 df-en 6731 df-sup 6973 df-inf 6974 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-n0 9148 df-z 9225 df-uz 9500 df-q 9591 df-rp 9623 df-fz 9978 df-fzo 10111 df-fl 10238 df-mod 10291 df-seqfrec 10414 df-exp 10488 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-dvds 11761 df-gcd 11909 df-prm 12073 df-pc 12250 |
This theorem is referenced by: pcprmpw2 12297 pcaddlem 12303 expnprm 12316 lgsval2lem 13980 |
Copyright terms: Public domain | W3C validator |