| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpcomb | GIF version | ||
| Description: Swap 2nd and 3rd members of an undordered triple. (Contributed by NM, 22-May-2015.) |
| Ref | Expression |
|---|---|
| tpcomb | ⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpcoma 3737 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝐶, 𝐵, 𝐴} | |
| 2 | tprot 3736 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
| 3 | tprot 3736 | . 2 ⊢ {𝐴, 𝐶, 𝐵} = {𝐶, 𝐵, 𝐴} | |
| 4 | 1, 2, 3 | 3eqtr4i 2238 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 {ctp 3645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-tp 3651 |
| This theorem is referenced by: prsstp13 3798 |
| Copyright terms: Public domain | W3C validator |