![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > preq2 | GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
preq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3695 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
2 | prcom 3694 | . 2 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
3 | prcom 3694 | . 2 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 {cpr 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 |
This theorem is referenced by: preq12 3697 preq2i 3699 preq2d 3702 tpeq2 3705 preq12bg 3799 opeq2 3805 uniprg 3850 intprg 3903 prexg 4240 opth 4266 opeqsn 4281 relop 4812 funopg 5288 pr2ne 7252 hashprg 10879 bj-prexg 15403 |
Copyright terms: Public domain | W3C validator |