ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq2 GIF version

Theorem preq2 3744
Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
preq2 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})

Proof of Theorem preq2
StepHypRef Expression
1 preq1 3743 . 2 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
2 prcom 3742 . 2 {𝐶, 𝐴} = {𝐴, 𝐶}
3 prcom 3742 . 2 {𝐶, 𝐵} = {𝐵, 𝐶}
41, 2, 33eqtr4g 2287 1 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  preq12  3745  preq2i  3747  preq2d  3750  tpeq2  3753  preq12bg  3850  opeq2  3857  uniprg  3902  intprg  3955  prexg  4294  opth  4322  opeqsn  4338  relop  4871  funopg  5351  en2  6971  prfidceq  7086  pr2ne  7361  pr1or2  7363  hashprg  11025  upgrex  15897  usgredg4  16007  usgredgreu  16008  uspgredg2vtxeu  16010  uspgredg2v  16013  ifpsnprss  16040  bj-prexg  16232
  Copyright terms: Public domain W3C validator