| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq2 | GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| preq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3743 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 2 | prcom 3742 | . 2 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 3 | prcom 3742 | . 2 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: preq12 3745 preq2i 3747 preq2d 3750 tpeq2 3753 preq12bg 3850 opeq2 3857 uniprg 3902 intprg 3955 prexg 4294 opth 4322 opeqsn 4338 relop 4871 funopg 5351 en2 6971 prfidceq 7086 pr2ne 7361 pr1or2 7363 hashprg 11025 upgrex 15897 usgredg4 16007 usgredgreu 16008 uspgredg2vtxeu 16010 uspgredg2v 16013 ifpsnprss 16040 bj-prexg 16232 |
| Copyright terms: Public domain | W3C validator |