ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq2 GIF version

Theorem preq2 3685
Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
preq2 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})

Proof of Theorem preq2
StepHypRef Expression
1 preq1 3684 . 2 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
2 prcom 3683 . 2 {𝐶, 𝐴} = {𝐴, 𝐶}
3 prcom 3683 . 2 {𝐶, 𝐵} = {𝐵, 𝐶}
41, 2, 33eqtr4g 2247 1 (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {cpr 3608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614
This theorem is referenced by:  preq12  3686  preq2i  3688  preq2d  3691  tpeq2  3694  preq12bg  3788  opeq2  3794  uniprg  3839  intprg  3892  prexg  4229  opth  4255  opeqsn  4270  relop  4795  funopg  5269  pr2ne  7220  hashprg  10819  bj-prexg  15116
  Copyright terms: Public domain W3C validator