Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preq2 | GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
preq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 3632 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
2 | prcom 3631 | . 2 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
3 | prcom 3631 | . 2 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2212 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 {cpr 3557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 |
This theorem is referenced by: preq12 3634 preq2i 3636 preq2d 3639 tpeq2 3642 preq12bg 3732 opeq2 3738 uniprg 3783 intprg 3836 prexg 4166 opth 4192 opeqsn 4207 relop 4729 funopg 5197 pr2ne 7106 hashprg 10659 bj-prexg 13432 |
Copyright terms: Public domain | W3C validator |