| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq2 | GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| preq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3709 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 2 | prcom 3708 | . 2 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 3 | prcom 3708 | . 2 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2262 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 {cpr 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 |
| This theorem is referenced by: preq12 3711 preq2i 3713 preq2d 3716 tpeq2 3719 preq12bg 3813 opeq2 3819 uniprg 3864 intprg 3917 prexg 4254 opth 4280 opeqsn 4295 relop 4826 funopg 5302 prfidceq 7007 pr2ne 7282 hashprg 10934 bj-prexg 15711 |
| Copyright terms: Public domain | W3C validator |