| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq2 | GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| preq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3700 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 2 | prcom 3699 | . 2 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 3 | prcom 3699 | . 2 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 {cpr 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: preq12 3702 preq2i 3704 preq2d 3707 tpeq2 3710 preq12bg 3804 opeq2 3810 uniprg 3855 intprg 3908 prexg 4245 opth 4271 opeqsn 4286 relop 4817 funopg 5293 prfidceq 6998 pr2ne 7271 hashprg 10917 bj-prexg 15641 |
| Copyright terms: Public domain | W3C validator |