| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq2 | GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| preq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq1 3715 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
| 2 | prcom 3714 | . 2 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 3 | prcom 3714 | . 2 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 4 | 1, 2, 3 | 3eqtr4g 2264 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: preq12 3717 preq2i 3719 preq2d 3722 tpeq2 3725 preq12bg 3820 opeq2 3826 uniprg 3871 intprg 3924 prexg 4263 opth 4289 opeqsn 4305 relop 4836 funopg 5314 en2 6926 prfidceq 7040 pr2ne 7315 pr1or2 7316 hashprg 10975 upgrex 15774 bj-prexg 15985 |
| Copyright terms: Public domain | W3C validator |