ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1d GIF version

Theorem uneq1d 3290
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
uneq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem uneq1d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq1 3284 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135
This theorem is referenced by:  ifeq1  3539  preq1  3671  tpeq1  3680  tpeq2  3681  resasplitss  5397  fmptpr  5710  funresdfunsnss  5721  rdgisucinc  6388  oasuc  6467  omsuc  6475  funresdfunsndc  6509  fisseneq  6933  sbthlemi5  6962  exmidfodomrlemim  7202  fzpred  10072  fseq1p1m1  10096  nn0split  10138  nnsplit  10139  fzo0sn0fzo1  10223  fzosplitprm1  10236  fsum1p  11428  fprod1p  11609  zsupcllemstep  11948  setsvala  12495  setsabsd  12503  setscom  12504  prdsex  12723
  Copyright terms: Public domain W3C validator