| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1d | GIF version | ||
| Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| uneq1d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq1 3351 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: ifeq1 3605 preq1 3743 tpeq1 3752 tpeq2 3753 resasplitss 5504 fmptpr 5830 funresdfunsnss 5841 rdgisucinc 6529 oasuc 6608 omsuc 6616 funresdfunsndc 6650 fisseneq 7092 sbthlemi5 7124 exmidfodomrlemim 7375 fzpred 10262 fseq1p1m1 10286 nn0split 10328 nnsplit 10329 fzo0sn0fzo1 10422 fzosplitprm1 10435 zsupcllemstep 10444 fsum1p 11924 fprod1p 12105 setsvala 13058 setsabsd 13066 setscom 13067 prdsex 13297 prdsval 13301 plyaddlem1 15415 plymullem1 15416 |
| Copyright terms: Public domain | W3C validator |