| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1d | GIF version | ||
| Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| uneq1d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | uneq1 3319 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∪ cun 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 |
| This theorem is referenced by: ifeq1 3573 preq1 3709 tpeq1 3718 tpeq2 3719 resasplitss 5454 fmptpr 5775 funresdfunsnss 5786 rdgisucinc 6470 oasuc 6549 omsuc 6557 funresdfunsndc 6591 fisseneq 7030 sbthlemi5 7062 exmidfodomrlemim 7308 fzpred 10191 fseq1p1m1 10215 nn0split 10257 nnsplit 10258 fzo0sn0fzo1 10348 fzosplitprm1 10361 zsupcllemstep 10370 fsum1p 11671 fprod1p 11852 setsvala 12805 setsabsd 12813 setscom 12814 prdsex 13043 prdsval 13047 plyaddlem1 15161 plymullem1 15162 |
| Copyright terms: Public domain | W3C validator |