Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq1d | GIF version |
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
uneq1d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | uneq1 3280 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∪ cun 3125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 |
This theorem is referenced by: ifeq1 3535 preq1 3666 tpeq1 3675 tpeq2 3676 resasplitss 5387 fmptpr 5700 funresdfunsnss 5711 rdgisucinc 6376 oasuc 6455 omsuc 6463 funresdfunsndc 6497 fisseneq 6921 sbthlemi5 6950 exmidfodomrlemim 7190 fzpred 10040 fseq1p1m1 10064 nn0split 10106 nnsplit 10107 fzo0sn0fzo1 10191 fzosplitprm1 10204 fsum1p 11394 fprod1p 11575 zsupcllemstep 11913 setsvala 12460 setsabsd 12468 setscom 12469 |
Copyright terms: Public domain | W3C validator |