ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1d GIF version

Theorem uneq1d 3317
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
uneq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem uneq1d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq1 3311 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  ifeq1  3565  preq1  3700  tpeq1  3709  tpeq2  3710  resasplitss  5440  fmptpr  5757  funresdfunsnss  5768  rdgisucinc  6452  oasuc  6531  omsuc  6539  funresdfunsndc  6573  fisseneq  7004  sbthlemi5  7036  exmidfodomrlemim  7282  fzpred  10164  fseq1p1m1  10188  nn0split  10230  nnsplit  10231  fzo0sn0fzo1  10316  fzosplitprm1  10329  zsupcllemstep  10338  fsum1p  11602  fprod1p  11783  setsvala  12736  setsabsd  12744  setscom  12745  prdsex  12973  prdsval  12977  plyaddlem1  15091  plymullem1  15092
  Copyright terms: Public domain W3C validator