![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq1d | GIF version |
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
uneq1d | ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | uneq1 3307 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∪ cun 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 |
This theorem is referenced by: ifeq1 3561 preq1 3696 tpeq1 3705 tpeq2 3706 resasplitss 5434 fmptpr 5751 funresdfunsnss 5762 rdgisucinc 6440 oasuc 6519 omsuc 6527 funresdfunsndc 6561 fisseneq 6990 sbthlemi5 7022 exmidfodomrlemim 7263 fzpred 10139 fseq1p1m1 10163 nn0split 10205 nnsplit 10206 fzo0sn0fzo1 10291 fzosplitprm1 10304 fsum1p 11564 fprod1p 11745 zsupcllemstep 12085 setsvala 12652 setsabsd 12660 setscom 12661 prdsex 12883 plyaddlem1 14926 plymullem1 14927 |
Copyright terms: Public domain | W3C validator |