ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1d GIF version

Theorem uneq1d 3275
Description: Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
Hypothesis
Ref Expression
uneq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
uneq1d (𝜑 → (𝐴𝐶) = (𝐵𝐶))

Proof of Theorem uneq1d
StepHypRef Expression
1 uneq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 uneq1 3269 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2syl 14 1 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120
This theorem is referenced by:  ifeq1  3523  preq1  3653  tpeq1  3662  tpeq2  3663  resasplitss  5367  fmptpr  5677  funresdfunsnss  5688  rdgisucinc  6353  oasuc  6432  omsuc  6440  funresdfunsndc  6474  fisseneq  6897  sbthlemi5  6926  exmidfodomrlemim  7157  fzpred  10005  fseq1p1m1  10029  nn0split  10071  nnsplit  10072  fzo0sn0fzo1  10156  fzosplitprm1  10169  fsum1p  11359  fprod1p  11540  zsupcllemstep  11878  setsvala  12425  setsabsd  12433  setscom  12434
  Copyright terms: Public domain W3C validator