| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1g | GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | orci 736 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
| 3 | elprg 3686 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
| 4 | 2, 3 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prid2g 3771 prid1 3772 preqr1g 3844 opth1 4322 en2lp 4646 acexmidlemcase 6002 pw2f1odclem 7003 en2eqpr 7077 m1expcl2 10791 maxabslemval 11727 xrmaxiflemval 11769 xrmaxaddlem 11779 2strbasg 13161 2strbas1g 13164 coseq0negpitopi 15518 structvtxval 15848 umgrnloopv 15922 umgredgprv 15923 umgrpredgv 15953 uhgr2edg 16012 umgrvad2edg 16017 |
| Copyright terms: Public domain | W3C validator |