ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1g GIF version

Theorem prid1g 3698
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
Assertion
Ref Expression
prid1g (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})

Proof of Theorem prid1g
StepHypRef Expression
1 eqid 2177 . . 3 𝐴 = 𝐴
21orci 731 . 2 (𝐴 = 𝐴𝐴 = 𝐵)
3 elprg 3614 . 2 (𝐴𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴𝐴 = 𝐵)))
42, 3mpbiri 168 1 (𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708   = wceq 1353  wcel 2148  {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601
This theorem is referenced by:  prid2g  3699  prid1  3700  preqr1g  3768  opth1  4238  en2lp  4555  acexmidlemcase  5872  en2eqpr  6909  m1expcl2  10544  maxabslemval  11219  xrmaxiflemval  11260  xrmaxaddlem  11270  2strbasg  12580  2strbas1g  12583  coseq0negpitopi  14342
  Copyright terms: Public domain W3C validator