| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1g | GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | orci 735 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
| 3 | elprg 3666 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
| 4 | 2, 3 | mpbiri 168 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 712 = wceq 1375 ∈ wcel 2180 {cpr 3647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 |
| This theorem is referenced by: prid2g 3751 prid1 3752 preqr1g 3823 opth1 4301 en2lp 4623 acexmidlemcase 5969 pw2f1odclem 6963 en2eqpr 7037 m1expcl2 10750 maxabslemval 11685 xrmaxiflemval 11727 xrmaxaddlem 11737 2strbasg 13119 2strbas1g 13122 coseq0negpitopi 15475 structvtxval 15805 umgrnloopv 15879 umgredgprv 15880 umgrpredgv 15910 uhgr2edg 15969 umgrvad2edg 15974 |
| Copyright terms: Public domain | W3C validator |