ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unv GIF version

Theorem unv 3462
Description: The union of a class with the universal class is the universal class. Exercise 4.10(l) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
unv (𝐴 ∪ V) = V

Proof of Theorem unv
StepHypRef Expression
1 ssv 3179 . 2 (𝐴 ∪ V) ⊆ V
2 ssun2 3301 . 2 V ⊆ (𝐴 ∪ V)
31, 2eqssi 3173 1 (𝐴 ∪ V) = V
Colors of variables: wff set class
Syntax hints:   = wceq 1353  Vcvv 2739  cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator