Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unv | GIF version |
Description: The union of a class with the universal class is the universal class. Exercise 4.10(l) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
unv | ⊢ (𝐴 ∪ V) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3169 | . 2 ⊢ (𝐴 ∪ V) ⊆ V | |
2 | ssun2 3291 | . 2 ⊢ V ⊆ (𝐴 ∪ V) | |
3 | 1, 2 | eqssi 3163 | 1 ⊢ (𝐴 ∪ V) = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 Vcvv 2730 ∪ cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |