ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqssi GIF version

Theorem eqssi 3217
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
eqssi.1 𝐴𝐵
eqssi.2 𝐵𝐴
Assertion
Ref Expression
eqssi 𝐴 = 𝐵

Proof of Theorem eqssi
StepHypRef Expression
1 eqssi.1 . 2 𝐴𝐵
2 eqssi.2 . 2 𝐵𝐴
3 eqss 3216 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
41, 2, 3mpbir2an 945 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  inv1  3505  unv  3506  undifabs  3545  intab  3928  intid  4286  find  4665  limom  4680  dmv  4913  0ima  5061  rnxpid  5136  dftpos4  6372  axaddf  8016  axmulf  8017  dfuzi  9518  unirnioo  10130  0bits  12385  4sqlem19  12847  txuni2  14843  dvef  15314  reeff1o  15360
  Copyright terms: Public domain W3C validator