ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqssi GIF version

Theorem eqssi 3240
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.)
Hypotheses
Ref Expression
eqssi.1 𝐴𝐵
eqssi.2 𝐵𝐴
Assertion
Ref Expression
eqssi 𝐴 = 𝐵

Proof of Theorem eqssi
StepHypRef Expression
1 eqssi.1 . 2 𝐴𝐵
2 eqssi.2 . 2 𝐵𝐴
3 eqss 3239 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
41, 2, 3mpbir2an 948 1 𝐴 = 𝐵
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  inv1  3528  unv  3529  undifabs  3568  intab  3951  intid  4309  find  4690  limom  4705  dmv  4938  0ima  5087  rnxpid  5162  dftpos4  6407  axaddf  8051  axmulf  8052  dfuzi  9553  unirnioo  10165  0bits  12465  4sqlem19  12927  txuni2  14924  dvef  15395  reeff1o  15441
  Copyright terms: Public domain W3C validator