Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqssi | GIF version |
Description: Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.) |
Ref | Expression |
---|---|
eqssi.1 | ⊢ 𝐴 ⊆ 𝐵 |
eqssi.2 | ⊢ 𝐵 ⊆ 𝐴 |
Ref | Expression |
---|---|
eqssi | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssi.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | eqssi.2 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
3 | eqss 3162 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 937 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: inv1 3451 unv 3452 undifabs 3491 intab 3860 intid 4209 find 4583 limom 4598 dmv 4827 0ima 4971 rnxpid 5045 dftpos4 6242 axaddf 7830 axmulf 7831 dfuzi 9322 unirnioo 9930 txuni2 13050 dvef 13482 reeff1o 13488 |
Copyright terms: Public domain | W3C validator |