Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inv1 | GIF version |
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.) |
Ref | Expression |
---|---|
inv1 | ⊢ (𝐴 ∩ V) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 3342 | . 2 ⊢ (𝐴 ∩ V) ⊆ 𝐴 | |
2 | ssid 3162 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
3 | ssv 3164 | . . 3 ⊢ 𝐴 ⊆ V | |
4 | 2, 3 | ssini 3345 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∩ V) |
5 | 1, 4 | eqssi 3158 | 1 ⊢ (𝐴 ∩ V) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 Vcvv 2726 ∩ cin 3115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 |
This theorem is referenced by: rint0 3863 riin0 3937 xpssres 4919 resdmdfsn 4927 imainrect 5049 xpima2m 5051 dmresv 5062 |
Copyright terms: Public domain | W3C validator |