ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inv1 GIF version

Theorem inv1 3451
Description: The intersection of a class with the universal class is itself. Exercise 4.10(k) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
inv1 (𝐴 ∩ V) = 𝐴

Proof of Theorem inv1
StepHypRef Expression
1 inss1 3347 . 2 (𝐴 ∩ V) ⊆ 𝐴
2 ssid 3167 . . 3 𝐴𝐴
3 ssv 3169 . . 3 𝐴 ⊆ V
42, 3ssini 3350 . 2 𝐴 ⊆ (𝐴 ∩ V)
51, 4eqssi 3163 1 (𝐴 ∩ V) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  Vcvv 2730  cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134
This theorem is referenced by:  rint0  3870  riin0  3944  xpssres  4926  resdmdfsn  4934  imainrect  5056  xpima2m  5058  dmresv  5069
  Copyright terms: Public domain W3C validator