![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtocl2gf | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
vtocl2gf.1 | ⊢ Ⅎ𝑥𝐴 |
vtocl2gf.2 | ⊢ Ⅎ𝑦𝐴 |
vtocl2gf.3 | ⊢ Ⅎ𝑦𝐵 |
vtocl2gf.4 | ⊢ Ⅎ𝑥𝜓 |
vtocl2gf.5 | ⊢ Ⅎ𝑦𝜒 |
vtocl2gf.6 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl2gf.7 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl2gf.8 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl2gf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2750 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vtocl2gf.3 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
3 | vtocl2gf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
4 | 3 | nfel1 2330 | . . . 4 ⊢ Ⅎ𝑦 𝐴 ∈ V |
5 | vtocl2gf.5 | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
6 | 4, 5 | nfim 1572 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ V → 𝜒) |
7 | vtocl2gf.7 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
8 | 7 | imbi2d 230 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
9 | vtocl2gf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
10 | vtocl2gf.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
11 | vtocl2gf.6 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
12 | vtocl2gf.8 | . . . 4 ⊢ 𝜑 | |
13 | 9, 10, 11, 12 | vtoclgf 2797 | . . 3 ⊢ (𝐴 ∈ V → 𝜓) |
14 | 2, 6, 8, 13 | vtoclgf 2797 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ V → 𝜒)) |
15 | 1, 14 | mpan9 281 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 Ⅎwnf 1460 ∈ wcel 2148 Ⅎwnfc 2306 Vcvv 2739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 |
This theorem is referenced by: vtocl3gf 2802 vtocl2g 2803 vtocl2gaf 2806 |
Copyright terms: Public domain | W3C validator |