| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl2gf | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtocl2gf.1 | ⊢ Ⅎ𝑥𝐴 |
| vtocl2gf.2 | ⊢ Ⅎ𝑦𝐴 |
| vtocl2gf.3 | ⊢ Ⅎ𝑦𝐵 |
| vtocl2gf.4 | ⊢ Ⅎ𝑥𝜓 |
| vtocl2gf.5 | ⊢ Ⅎ𝑦𝜒 |
| vtocl2gf.6 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2gf.7 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2gf.8 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2gf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | vtocl2gf.3 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 3 | vtocl2gf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 4 | 3 | nfel1 2350 | . . . 4 ⊢ Ⅎ𝑦 𝐴 ∈ V |
| 5 | vtocl2gf.5 | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
| 6 | 4, 5 | nfim 1586 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ V → 𝜒) |
| 7 | vtocl2gf.7 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 8 | 7 | imbi2d 230 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
| 9 | vtocl2gf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 10 | vtocl2gf.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 11 | vtocl2gf.6 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 12 | vtocl2gf.8 | . . . 4 ⊢ 𝜑 | |
| 13 | 9, 10, 11, 12 | vtoclgf 2822 | . . 3 ⊢ (𝐴 ∈ V → 𝜓) |
| 14 | 2, 6, 8, 13 | vtoclgf 2822 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ V → 𝜒)) |
| 15 | 1, 14 | mpan9 281 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: vtocl3gf 2827 vtocl2g 2828 vtocl2gaf 2831 |
| Copyright terms: Public domain | W3C validator |