ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2gf GIF version

Theorem vtocl2gf 2801
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.)
Hypotheses
Ref Expression
vtocl2gf.1 𝑥𝐴
vtocl2gf.2 𝑦𝐴
vtocl2gf.3 𝑦𝐵
vtocl2gf.4 𝑥𝜓
vtocl2gf.5 𝑦𝜒
vtocl2gf.6 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2gf.7 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2gf.8 𝜑
Assertion
Ref Expression
vtocl2gf ((𝐴𝑉𝐵𝑊) → 𝜒)

Proof of Theorem vtocl2gf
StepHypRef Expression
1 elex 2750 . 2 (𝐴𝑉𝐴 ∈ V)
2 vtocl2gf.3 . . 3 𝑦𝐵
3 vtocl2gf.2 . . . . 5 𝑦𝐴
43nfel1 2330 . . . 4 𝑦 𝐴 ∈ V
5 vtocl2gf.5 . . . 4 𝑦𝜒
64, 5nfim 1572 . . 3 𝑦(𝐴 ∈ V → 𝜒)
7 vtocl2gf.7 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
87imbi2d 230 . . 3 (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒)))
9 vtocl2gf.1 . . . 4 𝑥𝐴
10 vtocl2gf.4 . . . 4 𝑥𝜓
11 vtocl2gf.6 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
12 vtocl2gf.8 . . . 4 𝜑
139, 10, 11, 12vtoclgf 2797 . . 3 (𝐴 ∈ V → 𝜓)
142, 6, 8, 13vtoclgf 2797 . 2 (𝐵𝑊 → (𝐴 ∈ V → 𝜒))
151, 14mpan9 281 1 ((𝐴𝑉𝐵𝑊) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wnf 1460  wcel 2148  wnfc 2306  Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741
This theorem is referenced by:  vtocl3gf  2802  vtocl2g  2803  vtocl2gaf  2806
  Copyright terms: Public domain W3C validator