Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl2g | GIF version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl2g.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2308 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2308 | . 2 ⊢ Ⅎ𝑦𝐵 | |
4 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | nfv 1516 | . 2 ⊢ Ⅎ𝑦𝜒 | |
6 | vtocl2g.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | vtocl2g.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
8 | vtocl2g.3 | . 2 ⊢ 𝜑 | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2788 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: uniprg 3804 intprg 3857 opthg 4216 opelopabsb 4238 unexb 4420 vtoclr 4652 elimasng 4972 cnvsng 5089 funopg 5222 f1osng 5473 fsng 5658 fvsng 5681 op1stg 6118 op2ndg 6119 xpsneng 6788 xpcomeng 6794 bdunexb 13802 bj-unexg 13803 |
Copyright terms: Public domain | W3C validator |