| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl2g | GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2g.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜒 | |
| 6 | vtocl2g.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | vtocl2g.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 8 | vtocl2g.3 | . 2 ⊢ 𝜑 | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2826 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: uniprg 3855 intprg 3908 opthg 4272 opelopabsb 4295 unexb 4478 vtoclr 4712 elimasng 5038 cnvsng 5156 funopg 5293 f1osng 5548 fsng 5738 fvsng 5761 op1stg 6217 op2ndg 6218 xpsneng 6890 xpcomeng 6896 mhmlem 13320 bdunexb 15650 bj-unexg 15651 |
| Copyright terms: Public domain | W3C validator |