| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl2g | GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2g.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2349 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | nfv 1552 | . 2 ⊢ Ⅎ𝑦𝜒 | |
| 6 | vtocl2g.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | vtocl2g.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 8 | vtocl2g.3 | . 2 ⊢ 𝜑 | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2837 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 |
| This theorem is referenced by: vtocl4g 2846 uniprg 3871 intprg 3924 opthg 4290 opelopabsb 4314 unexb 4497 vtoclr 4731 elimasng 5059 cnvsng 5177 funopg 5314 f1osng 5576 fsng 5766 fvsng 5793 op1stg 6249 op2ndg 6250 xpsneng 6932 xpcomeng 6938 mhmlem 13525 bdunexb 15994 bj-unexg 15995 |
| Copyright terms: Public domain | W3C validator |