ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2g GIF version

Theorem vtocl2g 2799
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
Hypotheses
Ref Expression
vtocl2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2g.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2g.3 𝜑
Assertion
Ref Expression
vtocl2g ((𝐴𝑉𝐵𝑊) → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem vtocl2g
StepHypRef Expression
1 nfcv 2317 . 2 𝑥𝐴
2 nfcv 2317 . 2 𝑦𝐴
3 nfcv 2317 . 2 𝑦𝐵
4 nfv 1526 . 2 𝑥𝜓
5 nfv 1526 . 2 𝑦𝜒
6 vtocl2g.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
7 vtocl2g.2 . 2 (𝑦 = 𝐵 → (𝜓𝜒))
8 vtocl2g.3 . 2 𝜑
91, 2, 3, 4, 5, 6, 7, 8vtocl2gf 2797 1 ((𝐴𝑉𝐵𝑊) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737
This theorem is referenced by:  uniprg  3820  intprg  3873  opthg  4232  opelopabsb  4254  unexb  4436  vtoclr  4668  elimasng  4989  cnvsng  5106  funopg  5242  f1osng  5494  fsng  5681  fvsng  5704  op1stg  6141  op2ndg  6142  xpsneng  6812  xpcomeng  6818  mhmlem  12848  bdunexb  14241  bj-unexg  14242
  Copyright terms: Public domain W3C validator