| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl2g | GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2g.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2347 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2347 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | nfv 1550 | . 2 ⊢ Ⅎ𝑦𝜒 | |
| 6 | vtocl2g.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | vtocl2g.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 8 | vtocl2g.3 | . 2 ⊢ 𝜑 | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2834 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 |
| This theorem is referenced by: uniprg 3864 intprg 3917 opthg 4281 opelopabsb 4305 unexb 4488 vtoclr 4722 elimasng 5049 cnvsng 5167 funopg 5304 f1osng 5562 fsng 5752 fvsng 5779 op1stg 6235 op2ndg 6236 xpsneng 6916 xpcomeng 6922 mhmlem 13392 bdunexb 15789 bj-unexg 15790 |
| Copyright terms: Public domain | W3C validator |