Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocl2g | GIF version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl2g.3 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2317 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2317 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2317 | . 2 ⊢ Ⅎ𝑦𝐵 | |
4 | nfv 1526 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | nfv 1526 | . 2 ⊢ Ⅎ𝑦𝜒 | |
6 | vtocl2g.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | vtocl2g.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
8 | vtocl2g.3 | . 2 ⊢ 𝜑 | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2797 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 |
This theorem is referenced by: uniprg 3820 intprg 3873 opthg 4232 opelopabsb 4254 unexb 4436 vtoclr 4668 elimasng 4989 cnvsng 5106 funopg 5242 f1osng 5494 fsng 5681 fvsng 5704 op1stg 6141 op2ndg 6142 xpsneng 6812 xpcomeng 6818 mhmlem 12848 bdunexb 14241 bj-unexg 14242 |
Copyright terms: Public domain | W3C validator |