| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocl2g | GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| vtocl2g.3 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2372 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | nfv 1574 | . 2 ⊢ Ⅎ𝑦𝜒 | |
| 6 | vtocl2g.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | vtocl2g.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 8 | vtocl2g.3 | . 2 ⊢ 𝜑 | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2863 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: vtocl4g 2872 uniprg 3902 intprg 3955 opthg 4323 opelopabsb 4347 unexb 4532 vtoclr 4766 elimasng 5095 cnvsng 5213 funopg 5351 f1osng 5613 fsng 5807 fvsng 5834 op1stg 6294 op2ndg 6295 xpsneng 6977 xpcomeng 6983 mhmlem 13646 bdunexb 16241 bj-unexg 16242 |
| Copyright terms: Public domain | W3C validator |