ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2g GIF version

Theorem vtocl2g 2836
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
Hypotheses
Ref Expression
vtocl2g.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2g.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2g.3 𝜑
Assertion
Ref Expression
vtocl2g ((𝐴𝑉𝐵𝑊) → 𝜒)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐵   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem vtocl2g
StepHypRef Expression
1 nfcv 2347 . 2 𝑥𝐴
2 nfcv 2347 . 2 𝑦𝐴
3 nfcv 2347 . 2 𝑦𝐵
4 nfv 1550 . 2 𝑥𝜓
5 nfv 1550 . 2 𝑦𝜒
6 vtocl2g.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
7 vtocl2g.2 . 2 (𝑦 = 𝐵 → (𝜓𝜒))
8 vtocl2g.3 . 2 𝜑
91, 2, 3, 4, 5, 6, 7, 8vtocl2gf 2834 1 ((𝐴𝑉𝐵𝑊) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773
This theorem is referenced by:  uniprg  3864  intprg  3917  opthg  4281  opelopabsb  4305  unexb  4488  vtoclr  4722  elimasng  5049  cnvsng  5167  funopg  5304  f1osng  5562  fsng  5752  fvsng  5779  op1stg  6235  op2ndg  6236  xpsneng  6916  xpcomeng  6922  mhmlem  13392  bdunexb  15789  bj-unexg  15790
  Copyright terms: Public domain W3C validator