| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtocl2g | GIF version | ||
| Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.) | 
| Ref | Expression | 
|---|---|
| vtocl2g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| vtocl2g.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | 
| vtocl2g.3 | ⊢ 𝜑 | 
| Ref | Expression | 
|---|---|
| vtocl2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfcv 2339 | . 2 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 5 | nfv 1542 | . 2 ⊢ Ⅎ𝑦𝜒 | |
| 6 | vtocl2g.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | vtocl2g.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 8 | vtocl2g.3 | . 2 ⊢ 𝜑 | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gf 2826 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 | 
| This theorem is referenced by: uniprg 3854 intprg 3907 opthg 4271 opelopabsb 4294 unexb 4477 vtoclr 4711 elimasng 5037 cnvsng 5155 funopg 5292 f1osng 5545 fsng 5735 fvsng 5758 op1stg 6208 op2ndg 6209 xpsneng 6881 xpcomeng 6887 mhmlem 13244 bdunexb 15566 bj-unexg 15567 | 
| Copyright terms: Public domain | W3C validator |