| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2348 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: vtocl2gf 2826 vtocl3gf 2827 vtoclgaf 2829 vtocl2gaf 2831 vtocl3gaf 2833 nfop 3825 pofun 4348 nfse 4377 rabxfrd 4505 mptfvex 5650 fvmptf 5657 fmptcof 5732 fliftfuns 5848 riota2f 5902 ovmpos 6050 ov2gf 6051 elovmporab 6127 elovmporab1w 6128 fmpox 6267 mpofvex 6272 qliftfuns 6687 xpf1o 6914 iunfidisj 7021 cc3 7351 infssuzcldc 10342 sumfct 11556 sumrbdclem 11559 summodclem3 11562 summodclem2a 11563 zsumdc 11566 fsumgcl 11568 fsum3 11569 isumss 11573 isumss2 11575 fsum3cvg2 11576 fsumsplitf 11590 fsum2dlemstep 11616 fisumcom2 11620 fsumshftm 11627 fisum0diag2 11629 fsummulc2 11630 fsum00 11644 fsumabs 11647 fsumrelem 11653 fsumiun 11659 isumshft 11672 mertenslem2 11718 prodrbdclem 11753 prodmodclem3 11757 prodmodclem2a 11758 zproddc 11761 fprodseq 11765 prodfct 11769 prodssdc 11771 fprodmul 11773 fprodm1s 11783 fprodp1s 11784 fprodcl2lem 11787 fprodabs 11798 fprod2dlemstep 11804 fprodcom2fi 11808 fprodrec 11811 fproddivapf 11813 fprodsplitf 11814 fprodsplit1f 11816 fprodle 11822 pcmpt 12537 pcmptdvds 12539 gsumfzfsumlemm 14219 iuncld 14435 fsumcncntop 14887 dvmptfsum 15045 |
| Copyright terms: Public domain | W3C validator |