| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2348 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 |
| This theorem is referenced by: vtocl2gf 2826 vtocl3gf 2827 vtoclgaf 2829 vtocl2gaf 2831 vtocl3gaf 2833 nfop 3825 pofun 4348 nfse 4377 rabxfrd 4505 mptfvex 5650 fvmptf 5657 fmptcof 5732 fliftfuns 5848 riota2f 5902 ovmpos 6050 ov2gf 6051 elovmporab 6127 elovmporab1w 6128 fmpox 6267 mpofvex 6272 qliftfuns 6687 xpf1o 6914 iunfidisj 7021 cc3 7353 infssuzcldc 10344 sumfct 11558 sumrbdclem 11561 summodclem3 11564 summodclem2a 11565 zsumdc 11568 fsumgcl 11570 fsum3 11571 isumss 11575 isumss2 11577 fsum3cvg2 11578 fsumsplitf 11592 fsum2dlemstep 11618 fisumcom2 11622 fsumshftm 11629 fisum0diag2 11631 fsummulc2 11632 fsum00 11646 fsumabs 11649 fsumrelem 11655 fsumiun 11661 isumshft 11674 mertenslem2 11720 prodrbdclem 11755 prodmodclem3 11759 prodmodclem2a 11760 zproddc 11763 fprodseq 11767 prodfct 11771 prodssdc 11773 fprodmul 11775 fprodm1s 11785 fprodp1s 11786 fprodcl2lem 11789 fprodabs 11800 fprod2dlemstep 11806 fprodcom2fi 11810 fprodrec 11813 fproddivapf 11815 fprodsplitf 11816 fprodsplit1f 11818 fprodle 11824 pcmpt 12539 pcmptdvds 12541 gsumfzfsumlemm 14221 iuncld 14459 fsumcncntop 14911 dvmptfsum 15069 |
| Copyright terms: Public domain | W3C validator |