| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2356 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1482 ∈ wcel 2175 Ⅎwnfc 2334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 |
| This theorem is referenced by: vtocl2gf 2834 vtocl3gf 2835 vtoclgaf 2837 vtocl2gaf 2839 vtocl3gaf 2841 nfop 3834 pofun 4358 nfse 4387 rabxfrd 4515 mptfvex 5664 fvmptf 5671 fmptcof 5746 fliftfuns 5866 riota2f 5920 ovmpos 6068 ov2gf 6069 elovmporab 6145 elovmporab1w 6146 fmpox 6285 mpofvex 6290 qliftfuns 6705 xpf1o 6940 iunfidisj 7047 cc3 7379 infssuzcldc 10376 sumfct 11656 sumrbdclem 11659 summodclem3 11662 summodclem2a 11663 zsumdc 11666 fsumgcl 11668 fsum3 11669 isumss 11673 isumss2 11675 fsum3cvg2 11676 fsumsplitf 11690 fsum2dlemstep 11716 fisumcom2 11720 fsumshftm 11727 fisum0diag2 11729 fsummulc2 11730 fsum00 11744 fsumabs 11747 fsumrelem 11753 fsumiun 11759 isumshft 11772 mertenslem2 11818 prodrbdclem 11853 prodmodclem3 11857 prodmodclem2a 11858 zproddc 11861 fprodseq 11865 prodfct 11869 prodssdc 11871 fprodmul 11873 fprodm1s 11883 fprodp1s 11884 fprodcl2lem 11887 fprodabs 11898 fprod2dlemstep 11904 fprodcom2fi 11908 fprodrec 11911 fproddivapf 11913 fprodsplitf 11914 fprodsplit1f 11916 fprodle 11922 pcmpt 12637 pcmptdvds 12639 gsumfzfsumlemm 14320 iuncld 14558 fsumcncntop 15010 dvmptfsum 15168 |
| Copyright terms: Public domain | W3C validator |