![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2345 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1471 ∈ wcel 2164 Ⅎwnfc 2323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 |
This theorem is referenced by: vtocl2gf 2822 vtocl3gf 2823 vtoclgaf 2825 vtocl2gaf 2827 vtocl3gaf 2829 nfop 3820 pofun 4343 nfse 4372 rabxfrd 4500 mptfvex 5643 fvmptf 5650 fmptcof 5725 fliftfuns 5841 riota2f 5895 ovmpos 6042 ov2gf 6043 elovmporab 6118 elovmporab1w 6119 fmpox 6253 mpofvex 6256 qliftfuns 6673 xpf1o 6900 iunfidisj 7005 cc3 7328 sumfct 11517 sumrbdclem 11520 summodclem3 11523 summodclem2a 11524 zsumdc 11527 fsumgcl 11529 fsum3 11530 isumss 11534 isumss2 11536 fsum3cvg2 11537 fsumsplitf 11551 fsum2dlemstep 11577 fisumcom2 11581 fsumshftm 11588 fisum0diag2 11590 fsummulc2 11591 fsum00 11605 fsumabs 11608 fsumrelem 11614 fsumiun 11620 isumshft 11633 mertenslem2 11679 prodrbdclem 11714 prodmodclem3 11718 prodmodclem2a 11719 zproddc 11722 fprodseq 11726 prodfct 11730 prodssdc 11732 fprodmul 11734 fprodm1s 11744 fprodp1s 11745 fprodcl2lem 11748 fprodabs 11759 fprod2dlemstep 11765 fprodcom2fi 11769 fprodrec 11772 fproddivapf 11774 fprodsplitf 11775 fprodsplit1f 11777 fprodle 11783 infssuzcldc 12088 pcmpt 12481 pcmptdvds 12483 gsumfzfsumlemm 14075 iuncld 14283 fsumcncntop 14724 |
Copyright terms: Public domain | W3C validator |