| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2356 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1482 ∈ wcel 2175 Ⅎwnfc 2334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 |
| This theorem is referenced by: vtocl2gf 2834 vtocl3gf 2835 vtoclgaf 2837 vtocl2gaf 2839 vtocl3gaf 2841 nfop 3834 pofun 4358 nfse 4387 rabxfrd 4515 mptfvex 5664 fvmptf 5671 fmptcof 5746 fliftfuns 5866 riota2f 5920 ovmpos 6068 ov2gf 6069 elovmporab 6145 elovmporab1w 6146 fmpox 6285 mpofvex 6290 qliftfuns 6705 xpf1o 6940 iunfidisj 7047 cc3 7379 infssuzcldc 10376 sumfct 11627 sumrbdclem 11630 summodclem3 11633 summodclem2a 11634 zsumdc 11637 fsumgcl 11639 fsum3 11640 isumss 11644 isumss2 11646 fsum3cvg2 11647 fsumsplitf 11661 fsum2dlemstep 11687 fisumcom2 11691 fsumshftm 11698 fisum0diag2 11700 fsummulc2 11701 fsum00 11715 fsumabs 11718 fsumrelem 11724 fsumiun 11730 isumshft 11743 mertenslem2 11789 prodrbdclem 11824 prodmodclem3 11828 prodmodclem2a 11829 zproddc 11832 fprodseq 11836 prodfct 11840 prodssdc 11842 fprodmul 11844 fprodm1s 11854 fprodp1s 11855 fprodcl2lem 11858 fprodabs 11869 fprod2dlemstep 11875 fprodcom2fi 11879 fprodrec 11882 fproddivapf 11884 fprodsplitf 11885 fprodsplit1f 11887 fprodle 11893 pcmpt 12608 pcmptdvds 12610 gsumfzfsumlemm 14291 iuncld 14529 fsumcncntop 14981 dvmptfsum 15139 |
| Copyright terms: Public domain | W3C validator |