![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2229 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2238 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1395 ∈ wcel 1439 Ⅎwnfc 2216 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-cleq 2082 df-clel 2085 df-nfc 2218 |
This theorem is referenced by: vtocl2gf 2682 vtocl3gf 2683 vtoclgaf 2685 vtocl2gaf 2687 vtocl3gaf 2689 nfop 3644 pofun 4148 nfse 4177 rabxfrd 4304 mptfvex 5401 fvmptf 5408 fmptcof 5479 fliftfuns 5591 riota2f 5643 ovmpt2s 5782 ov2gf 5783 fmpt2x 5984 mpt2fvex 5987 qliftfuns 6390 xpf1o 6614 iunfidisj 6709 sumfct 10817 isumrblem 10819 isummolem3 10824 isummolem2a 10825 zisum 10828 fsumgcl 10831 fisum 10832 isumss 10837 isumss2 10839 fisumcvg2 10840 fsum3cvg2 10841 fsumsplitf 10856 isummulc2 10874 fsum2dlemstep 10882 fisumcom2 10886 fsumshftm 10893 fisum0diag2 10895 fsummulc2 10896 fsum00 10910 fsumabs 10913 fsumrelem 10919 fsumiun 10925 isumshft 10938 mertenslem2 10984 infssuzcldc 11279 iuncld 11869 |
Copyright terms: Public domain | W3C validator |