Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version |
Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2299 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfel 2308 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
Colors of variables: wff set class |
Syntax hints: Ⅎwnf 1440 ∈ wcel 2128 Ⅎwnfc 2286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-cleq 2150 df-clel 2153 df-nfc 2288 |
This theorem is referenced by: vtocl2gf 2774 vtocl3gf 2775 vtoclgaf 2777 vtocl2gaf 2779 vtocl3gaf 2781 nfop 3757 pofun 4271 nfse 4300 rabxfrd 4427 mptfvex 5550 fvmptf 5557 fmptcof 5631 fliftfuns 5743 riota2f 5795 ovmpos 5938 ov2gf 5939 fmpox 6142 mpofvex 6145 qliftfuns 6557 xpf1o 6782 iunfidisj 6883 cc3 7171 sumfct 11253 sumrbdclem 11256 summodclem3 11259 summodclem2a 11260 zsumdc 11263 fsumgcl 11265 fsum3 11266 isumss 11270 isumss2 11272 fsum3cvg2 11273 fsumsplitf 11287 fsum2dlemstep 11313 fisumcom2 11317 fsumshftm 11324 fisum0diag2 11326 fsummulc2 11327 fsum00 11341 fsumabs 11344 fsumrelem 11350 fsumiun 11356 isumshft 11369 mertenslem2 11415 prodrbdclem 11450 prodmodclem3 11454 prodmodclem2a 11455 zproddc 11458 fprodseq 11462 prodfct 11466 prodssdc 11468 fprodmul 11470 fprodm1s 11480 fprodp1s 11481 fprodcl2lem 11484 fprodabs 11495 fprod2dlemstep 11501 fprodcom2fi 11505 fprodrec 11508 fproddivapf 11510 fprodsplitf 11511 fprodsplit1f 11513 fprodle 11519 infssuzcldc 11819 iuncld 12475 fsumcncntop 12916 |
Copyright terms: Public domain | W3C validator |