| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2381 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 |
| This theorem is referenced by: vtocl2gf 2863 vtocl3gf 2864 vtoclgaf 2866 vtocl2gaf 2868 vtocl3gaf 2870 nfop 3872 pofun 4402 nfse 4431 rabxfrd 4559 mptfvex 5719 fvmptf 5726 fmptcof 5801 fliftfuns 5921 riota2f 5976 ovmpos 6127 ov2gf 6128 elovmporab 6204 elovmporab1w 6205 fmpox 6344 mpofvex 6349 qliftfuns 6764 xpf1o 7001 iunfidisj 7109 cc3 7450 infssuzcldc 10450 sumfct 11880 sumrbdclem 11883 summodclem3 11886 summodclem2a 11887 zsumdc 11890 fsumgcl 11892 fsum3 11893 isumss 11897 isumss2 11899 fsum3cvg2 11900 fsumsplitf 11914 fsum2dlemstep 11940 fisumcom2 11944 fsumshftm 11951 fisum0diag2 11953 fsummulc2 11954 fsum00 11968 fsumabs 11971 fsumrelem 11977 fsumiun 11983 isumshft 11996 mertenslem2 12042 prodrbdclem 12077 prodmodclem3 12081 prodmodclem2a 12082 zproddc 12085 fprodseq 12089 prodfct 12093 prodssdc 12095 fprodmul 12097 fprodm1s 12107 fprodp1s 12108 fprodcl2lem 12111 fprodabs 12122 fprod2dlemstep 12128 fprodcom2fi 12132 fprodrec 12135 fproddivapf 12137 fprodsplitf 12138 fprodsplit1f 12140 fprodle 12146 pcmpt 12861 pcmptdvds 12863 gsumfzfsumlemm 14545 iuncld 14783 fsumcncntop 15235 dvmptfsum 15393 |
| Copyright terms: Public domain | W3C validator |