| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2348 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | 
| Colors of variables: wff set class | 
| Syntax hints: Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 | 
| This theorem is referenced by: vtocl2gf 2826 vtocl3gf 2827 vtoclgaf 2829 vtocl2gaf 2831 vtocl3gaf 2833 nfop 3824 pofun 4347 nfse 4376 rabxfrd 4504 mptfvex 5647 fvmptf 5654 fmptcof 5729 fliftfuns 5845 riota2f 5899 ovmpos 6046 ov2gf 6047 elovmporab 6123 elovmporab1w 6124 fmpox 6258 mpofvex 6263 qliftfuns 6678 xpf1o 6905 iunfidisj 7012 cc3 7335 infssuzcldc 10325 sumfct 11539 sumrbdclem 11542 summodclem3 11545 summodclem2a 11546 zsumdc 11549 fsumgcl 11551 fsum3 11552 isumss 11556 isumss2 11558 fsum3cvg2 11559 fsumsplitf 11573 fsum2dlemstep 11599 fisumcom2 11603 fsumshftm 11610 fisum0diag2 11612 fsummulc2 11613 fsum00 11627 fsumabs 11630 fsumrelem 11636 fsumiun 11642 isumshft 11655 mertenslem2 11701 prodrbdclem 11736 prodmodclem3 11740 prodmodclem2a 11741 zproddc 11744 fprodseq 11748 prodfct 11752 prodssdc 11754 fprodmul 11756 fprodm1s 11766 fprodp1s 11767 fprodcl2lem 11770 fprodabs 11781 fprod2dlemstep 11787 fprodcom2fi 11791 fprodrec 11794 fproddivapf 11796 fprodsplitf 11797 fprodsplit1f 11799 fprodle 11805 pcmpt 12512 pcmptdvds 12514 gsumfzfsumlemm 14143 iuncld 14351 fsumcncntop 14803 dvmptfsum 14961 | 
| Copyright terms: Public domain | W3C validator |