| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfel1 | GIF version | ||
| Description: Hypothesis builder for elementhood, special case. (Contributed by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeq1.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfel1 | ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeq1.1 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfel 2358 | 1 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 |
| This theorem is referenced by: vtocl2gf 2837 vtocl3gf 2838 vtoclgaf 2840 vtocl2gaf 2842 vtocl3gaf 2844 nfop 3844 pofun 4372 nfse 4401 rabxfrd 4529 mptfvex 5683 fvmptf 5690 fmptcof 5765 fliftfuns 5885 riota2f 5939 ovmpos 6087 ov2gf 6088 elovmporab 6164 elovmporab1w 6165 fmpox 6304 mpofvex 6309 qliftfuns 6724 xpf1o 6961 iunfidisj 7069 cc3 7410 infssuzcldc 10410 sumfct 11770 sumrbdclem 11773 summodclem3 11776 summodclem2a 11777 zsumdc 11780 fsumgcl 11782 fsum3 11783 isumss 11787 isumss2 11789 fsum3cvg2 11790 fsumsplitf 11804 fsum2dlemstep 11830 fisumcom2 11834 fsumshftm 11841 fisum0diag2 11843 fsummulc2 11844 fsum00 11858 fsumabs 11861 fsumrelem 11867 fsumiun 11873 isumshft 11886 mertenslem2 11932 prodrbdclem 11967 prodmodclem3 11971 prodmodclem2a 11972 zproddc 11975 fprodseq 11979 prodfct 11983 prodssdc 11985 fprodmul 11987 fprodm1s 11997 fprodp1s 11998 fprodcl2lem 12001 fprodabs 12012 fprod2dlemstep 12018 fprodcom2fi 12022 fprodrec 12025 fproddivapf 12027 fprodsplitf 12028 fprodsplit1f 12030 fprodle 12036 pcmpt 12751 pcmptdvds 12753 gsumfzfsumlemm 14434 iuncld 14672 fsumcncntop 15124 dvmptfsum 15282 |
| Copyright terms: Public domain | W3C validator |