![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prexg | GIF version |
Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3552, prprc1 3550, and prprc2 3551. (Contributed by Jim Kingdon, 16-Sep-2018.) |
Ref | Expression |
---|---|
prexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 3520 | . . . . . 6 ⊢ (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵}) | |
2 | 1 | eleq1d 2156 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V)) |
3 | zfpair2 4037 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ V | |
4 | 2, 3 | vtoclg 2679 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥, 𝐵} ∈ V) |
5 | preq1 3519 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
6 | 5 | eleq1d 2156 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V)) |
7 | 4, 6 | syl5ib 152 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
8 | 7 | vtocleg 2690 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
9 | 8 | imp 122 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∈ wcel 1438 Vcvv 2619 {cpr 3447 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-sn 3452 df-pr 3453 |
This theorem is referenced by: prelpwi 4041 opexg 4055 opi2 4060 opth 4064 opeqsn 4079 opeqpr 4080 uniop 4082 unex 4266 tpexg 4269 op1stb 4300 op1stbg 4301 onun2 4307 opthreg 4372 relop 4586 acexmidlemv 5650 pr2ne 6818 xrex 9303 |
Copyright terms: Public domain | W3C validator |