ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prexg GIF version

Theorem prexg 4212
Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3703, prprc1 3701, and prprc2 3702. (Contributed by Jim Kingdon, 16-Sep-2018.)
Assertion
Ref Expression
prexg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)

Proof of Theorem prexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3671 . . . . . 6 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
21eleq1d 2246 . . . . 5 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V))
3 zfpair2 4211 . . . . 5 {𝑥, 𝑦} ∈ V
42, 3vtoclg 2798 . . . 4 (𝐵𝑊 → {𝑥, 𝐵} ∈ V)
5 preq1 3670 . . . . 5 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
65eleq1d 2246 . . . 4 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V))
74, 6imbitrid 154 . . 3 (𝑥 = 𝐴 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
87vtocleg 2809 . 2 (𝐴𝑉 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
98imp 124 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2738  {cpr 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600
This theorem is referenced by:  prelpwi  4215  opexg  4229  opi2  4234  opth  4238  opeqsn  4253  opeqpr  4254  uniop  4256  unex  4442  tpexg  4445  op1stb  4479  op1stbg  4480  onun2  4490  opthreg  4556  relop  4778  acexmidlemv  5873  pr2ne  7191  exmidonfinlem  7192  exmidaclem  7207  sup3exmid  8914  xrex  9856  2strbasg  12578  2stropg  12579  prdsex  12718  xpsfval  12767  xpsval  12771  isomninnlem  14781  trilpolemlt1  14792  iswomninnlem  14800  iswomni0  14802  ismkvnnlem  14803
  Copyright terms: Public domain W3C validator