ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prexg GIF version

Theorem prexg 4205
Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3699, prprc1 3697, and prprc2 3698. (Contributed by Jim Kingdon, 16-Sep-2018.)
Assertion
Ref Expression
prexg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)

Proof of Theorem prexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3667 . . . . . 6 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
21eleq1d 2244 . . . . 5 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V))
3 zfpair2 4204 . . . . 5 {𝑥, 𝑦} ∈ V
42, 3vtoclg 2795 . . . 4 (𝐵𝑊 → {𝑥, 𝐵} ∈ V)
5 preq1 3666 . . . . 5 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
65eleq1d 2244 . . . 4 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V))
74, 6syl5ib 154 . . 3 (𝑥 = 𝐴 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
87vtocleg 2806 . 2 (𝐴𝑉 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
98imp 124 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  Vcvv 2735  {cpr 3590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596
This theorem is referenced by:  prelpwi  4208  opexg  4222  opi2  4227  opth  4231  opeqsn  4246  opeqpr  4247  uniop  4249  unex  4435  tpexg  4438  op1stb  4472  op1stbg  4473  onun2  4483  opthreg  4549  relop  4770  acexmidlemv  5863  pr2ne  7181  exmidonfinlem  7182  exmidaclem  7197  sup3exmid  8887  xrex  9827  2strbasg  12532  2stropg  12533  isomninnlem  14339  trilpolemlt1  14350  iswomninnlem  14358  iswomni0  14360  ismkvnnlem  14361
  Copyright terms: Public domain W3C validator