| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prexg | GIF version | ||
| Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3745, prprc1 3743, and prprc2 3744. (Contributed by Jim Kingdon, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| prexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 3713 | . . . . . 6 ⊢ (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵}) | |
| 2 | 1 | eleq1d 2275 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V)) |
| 3 | zfpair2 4259 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ V | |
| 4 | 2, 3 | vtoclg 2835 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥, 𝐵} ∈ V) |
| 5 | preq1 3712 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
| 6 | 5 | eleq1d 2275 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V)) |
| 7 | 4, 6 | imbitrid 154 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
| 8 | 7 | vtocleg 2846 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
| 9 | 8 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {cpr 3636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-sn 3641 df-pr 3642 |
| This theorem is referenced by: prelpwi 4263 opexg 4277 opi2 4282 opth 4286 opeqsn 4302 opeqpr 4303 uniop 4305 unex 4493 tpexg 4496 op1stb 4530 op1stbg 4531 onun2 4543 opthreg 4609 relop 4833 acexmidlemv 5952 en2prd 6920 pw2f1odclem 6943 pr2ne 7312 exmidonfinlem 7314 exmidaclem 7333 sup3exmid 9043 xrex 9991 2strbasg 13002 2stropg 13003 prdsex 13151 prdsval 13155 xpsfval 13230 xpsval 13234 gsumprval 13281 struct2slots2dom 15687 structiedg0val 15689 edgstruct 15710 umgrbien 15756 upgr1edc 15764 upgr1eopdc 15766 isomninnlem 16084 trilpolemlt1 16095 iswomninnlem 16103 iswomni0 16105 ismkvnnlem 16106 |
| Copyright terms: Public domain | W3C validator |