| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prexg | GIF version | ||
| Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3776, prprc1 3774, and prprc2 3775. (Contributed by Jim Kingdon, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| prexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 3744 | . . . . . 6 ⊢ (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵}) | |
| 2 | 1 | eleq1d 2298 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V)) |
| 3 | zfpair2 4293 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ V | |
| 4 | 2, 3 | vtoclg 2861 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥, 𝐵} ∈ V) |
| 5 | preq1 3743 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
| 6 | 5 | eleq1d 2298 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V)) |
| 7 | 4, 6 | imbitrid 154 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
| 8 | 7 | vtocleg 2874 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
| 9 | 8 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prelpw 4298 prelpwi 4299 opexg 4313 opi2 4318 opth 4322 opeqsn 4338 opeqpr 4339 uniop 4341 unex 4529 tpexg 4532 op1stb 4566 op1stbg 4567 onun2 4579 opthreg 4645 relop 4869 acexmidlemv 5992 en2prd 6960 pw2f1odclem 6983 pr2ne 7353 exmidonfinlem 7359 exmidaclem 7378 sup3exmid 9092 xrex 10040 2strbasg 13139 2stropg 13140 prdsex 13288 prdsval 13292 xpsfval 13367 xpsval 13371 gsumprval 13418 struct2slots2dom 15824 structiedg0val 15826 edgstruct 15849 umgrbien 15895 upgr1edc 15906 upgr1eopdc 15908 isomninnlem 16329 trilpolemlt1 16340 iswomninnlem 16348 iswomni0 16350 ismkvnnlem 16351 |
| Copyright terms: Public domain | W3C validator |