ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prexg GIF version

Theorem prexg 4295
Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3777, prprc1 3775, and prprc2 3776. (Contributed by Jim Kingdon, 16-Sep-2018.)
Assertion
Ref Expression
prexg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)

Proof of Theorem prexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3744 . . . . . 6 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
21eleq1d 2298 . . . . 5 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V))
3 zfpair2 4294 . . . . 5 {𝑥, 𝑦} ∈ V
42, 3vtoclg 2861 . . . 4 (𝐵𝑊 → {𝑥, 𝐵} ∈ V)
5 preq1 3743 . . . . 5 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
65eleq1d 2298 . . . 4 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V))
74, 6imbitrid 154 . . 3 (𝑥 = 𝐴 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
87vtocleg 2874 . 2 (𝐴𝑉 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
98imp 124 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  prelpw  4299  prelpwi  4300  opexg  4314  opi2  4319  opth  4323  opeqsn  4339  opeqpr  4340  uniop  4342  unex  4532  tpexg  4535  op1stb  4569  op1stbg  4570  onun2  4582  opthreg  4648  relop  4872  acexmidlemv  6005  2oex  6585  en2prd  6978  pw2f1odclem  7003  pr2ne  7373  exmidonfinlem  7379  exmidaclem  7398  sup3exmid  9112  xrex  10060  2strbasg  13161  2stropg  13162  prdsex  13310  prdsval  13314  xpsfval  13389  xpsval  13393  gsumprval  13440  struct2slots2dom  15847  structiedg0val  15849  edgstruct  15872  umgrbien  15918  upgr1edc  15929  upgr1eopdc  15931  isomninnlem  16428  trilpolemlt1  16439  iswomninnlem  16447  iswomni0  16449  ismkvnnlem  16450
  Copyright terms: Public domain W3C validator