| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prexg | GIF version | ||
| Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3777, prprc1 3775, and prprc2 3776. (Contributed by Jim Kingdon, 16-Sep-2018.) |
| Ref | Expression |
|---|---|
| prexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 3744 | . . . . . 6 ⊢ (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵}) | |
| 2 | 1 | eleq1d 2298 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V)) |
| 3 | zfpair2 4294 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ V | |
| 4 | 2, 3 | vtoclg 2861 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥, 𝐵} ∈ V) |
| 5 | preq1 3743 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
| 6 | 5 | eleq1d 2298 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V)) |
| 7 | 4, 6 | imbitrid 154 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
| 8 | 7 | vtocleg 2874 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
| 9 | 8 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 Vcvv 2799 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prelpw 4299 prelpwi 4300 opexg 4314 opi2 4319 opth 4323 opeqsn 4339 opeqpr 4340 uniop 4342 unex 4532 tpexg 4535 op1stb 4569 op1stbg 4570 onun2 4582 opthreg 4648 relop 4872 acexmidlemv 6005 2oex 6585 en2prd 6978 pw2f1odclem 7003 pr2ne 7373 exmidonfinlem 7379 exmidaclem 7398 sup3exmid 9112 xrex 10060 2strbasg 13161 2stropg 13162 prdsex 13310 prdsval 13314 xpsfval 13389 xpsval 13393 gsumprval 13440 struct2slots2dom 15847 structiedg0val 15849 edgstruct 15872 umgrbien 15918 upgr1edc 15929 upgr1eopdc 15931 isomninnlem 16428 trilpolemlt1 16439 iswomninnlem 16447 iswomni0 16449 ismkvnnlem 16450 |
| Copyright terms: Public domain | W3C validator |