ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prexg GIF version

Theorem prexg 4294
Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3776, prprc1 3774, and prprc2 3775. (Contributed by Jim Kingdon, 16-Sep-2018.)
Assertion
Ref Expression
prexg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)

Proof of Theorem prexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3744 . . . . . 6 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
21eleq1d 2298 . . . . 5 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V))
3 zfpair2 4293 . . . . 5 {𝑥, 𝑦} ∈ V
42, 3vtoclg 2861 . . . 4 (𝐵𝑊 → {𝑥, 𝐵} ∈ V)
5 preq1 3743 . . . . 5 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
65eleq1d 2298 . . . 4 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V))
74, 6imbitrid 154 . . 3 (𝑥 = 𝐴 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
87vtocleg 2874 . 2 (𝐴𝑉 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
98imp 124 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  prelpw  4298  prelpwi  4299  opexg  4313  opi2  4318  opth  4322  opeqsn  4338  opeqpr  4339  uniop  4341  unex  4529  tpexg  4532  op1stb  4566  op1stbg  4567  onun2  4579  opthreg  4645  relop  4869  acexmidlemv  5992  en2prd  6960  pw2f1odclem  6983  pr2ne  7353  exmidonfinlem  7359  exmidaclem  7378  sup3exmid  9092  xrex  10040  2strbasg  13139  2stropg  13140  prdsex  13288  prdsval  13292  xpsfval  13367  xpsval  13371  gsumprval  13418  struct2slots2dom  15824  structiedg0val  15826  edgstruct  15849  umgrbien  15895  upgr1edc  15906  upgr1eopdc  15908  isomninnlem  16329  trilpolemlt1  16340  iswomninnlem  16348  iswomni0  16350  ismkvnnlem  16351
  Copyright terms: Public domain W3C validator