| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > prexg | GIF version | ||
| Description: The Axiom of Pairing using class variables. Theorem 7.13 of [Quine] p. 51, but restricted to classes which exist. For proper classes, see prprc 3732, prprc1 3730, and prprc2 3731. (Contributed by Jim Kingdon, 16-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| prexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | preq2 3700 | . . . . . 6 ⊢ (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵}) | |
| 2 | 1 | eleq1d 2265 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V)) | 
| 3 | zfpair2 4243 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ V | |
| 4 | 2, 3 | vtoclg 2824 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥, 𝐵} ∈ V) | 
| 5 | preq1 3699 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
| 6 | 5 | eleq1d 2265 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V)) | 
| 7 | 4, 6 | imbitrid 154 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) | 
| 8 | 7 | vtocleg 2835 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) | 
| 9 | 8 | imp 124 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {cpr 3623 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 | 
| This theorem is referenced by: prelpwi 4247 opexg 4261 opi2 4266 opth 4270 opeqsn 4285 opeqpr 4286 uniop 4288 unex 4476 tpexg 4479 op1stb 4513 op1stbg 4514 onun2 4526 opthreg 4592 relop 4816 acexmidlemv 5920 pw2f1odclem 6895 pr2ne 7259 exmidonfinlem 7260 exmidaclem 7275 sup3exmid 8984 xrex 9931 2strbasg 12797 2stropg 12798 prdsex 12940 xpsfval 12991 xpsval 12995 gsumprval 13042 isomninnlem 15674 trilpolemlt1 15685 iswomninnlem 15693 iswomni0 15695 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |