Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-prexg | GIF version |
Description: Proof of prexg 4189 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-prexg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq2 3654 | . . . . . 6 ⊢ (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵}) | |
2 | 1 | eleq1d 2235 | . . . . 5 ⊢ (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V)) |
3 | bj-zfpair2 13792 | . . . . 5 ⊢ {𝑥, 𝑦} ∈ V | |
4 | 2, 3 | vtoclg 2786 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → {𝑥, 𝐵} ∈ V) |
5 | preq1 3653 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
6 | 5 | eleq1d 2235 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V)) |
7 | 4, 6 | syl5ib 153 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
8 | 7 | vtocleg 2797 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ 𝑊 → {𝐴, 𝐵} ∈ V)) |
9 | 8 | imp 123 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 Vcvv 2726 {cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-pr 4187 ax-bdor 13698 ax-bdeq 13702 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: bj-snexg 13794 bj-unex 13801 |
Copyright terms: Public domain | W3C validator |