Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-prexg GIF version

Theorem bj-prexg 16232
Description: Proof of prexg 4294 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-prexg ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)

Proof of Theorem bj-prexg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 3744 . . . . . 6 (𝑦 = 𝐵 → {𝑥, 𝑦} = {𝑥, 𝐵})
21eleq1d 2298 . . . . 5 (𝑦 = 𝐵 → ({𝑥, 𝑦} ∈ V ↔ {𝑥, 𝐵} ∈ V))
3 bj-zfpair2 16231 . . . . 5 {𝑥, 𝑦} ∈ V
42, 3vtoclg 2861 . . . 4 (𝐵𝑊 → {𝑥, 𝐵} ∈ V)
5 preq1 3743 . . . . 5 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
65eleq1d 2298 . . . 4 (𝑥 = 𝐴 → ({𝑥, 𝐵} ∈ V ↔ {𝐴, 𝐵} ∈ V))
74, 6imbitrid 154 . . 3 (𝑥 = 𝐴 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
87vtocleg 2874 . 2 (𝐴𝑉 → (𝐵𝑊 → {𝐴, 𝐵} ∈ V))
98imp 124 1 ((𝐴𝑉𝐵𝑊) → {𝐴, 𝐵} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  Vcvv 2799  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-pr 4292  ax-bdor 16137  ax-bdeq 16141  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  bj-snexg  16233  bj-unex  16240
  Copyright terms: Public domain W3C validator