| Step | Hyp | Ref
| Expression |
| 1 | | cc3.n |
. . 3
⊢ (𝜑 → 𝑁 ≈ ω) |
| 2 | | relen 6812 |
. . . 4
⊢ Rel
≈ |
| 3 | 2 | brrelex1i 4707 |
. . 3
⊢ (𝑁 ≈ ω → 𝑁 ∈ V) |
| 4 | | mptexg 5790 |
. . 3
⊢ (𝑁 ∈ V → (𝑛 ∈ 𝑁 ↦ 𝐹) ∈ V) |
| 5 | 1, 3, 4 | 3syl 17 |
. 2
⊢ (𝜑 → (𝑛 ∈ 𝑁 ↦ 𝐹) ∈ V) |
| 6 | | bren 6815 |
. . . . . . 7
⊢ (𝑁 ≈ ω ↔
∃ℎ ℎ:𝑁–1-1-onto→ω) |
| 7 | 1, 6 | sylib 122 |
. . . . . 6
⊢ (𝜑 → ∃ℎ ℎ:𝑁–1-1-onto→ω) |
| 8 | 7 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) → ∃ℎ ℎ:𝑁–1-1-onto→ω) |
| 9 | | cc3.cc |
. . . . . . . 8
⊢ (𝜑 →
CCHOICE) |
| 10 | 9 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) →
CCHOICE) |
| 11 | | cc3.f |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑛 ∈ 𝑁 𝐹 ∈ V) |
| 12 | | eqid 2196 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ 𝑁 ↦ 𝐹) = (𝑛 ∈ 𝑁 ↦ 𝐹) |
| 13 | 12 | mptfng 5386 |
. . . . . . . . . . . 12
⊢
(∀𝑛 ∈
𝑁 𝐹 ∈ V ↔ (𝑛 ∈ 𝑁 ↦ 𝐹) Fn 𝑁) |
| 14 | 11, 13 | sylib 122 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ 𝑁 ↦ 𝐹) Fn 𝑁) |
| 15 | 14 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) → (𝑛 ∈ 𝑁 ↦ 𝐹) Fn 𝑁) |
| 16 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) → 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) |
| 17 | 16 | fneq1d 5349 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) → (𝑘 Fn 𝑁 ↔ (𝑛 ∈ 𝑁 ↦ 𝐹) Fn 𝑁)) |
| 18 | 15, 17 | mpbird 167 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) → 𝑘 Fn 𝑁) |
| 19 | 18 | adantr 276 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) → 𝑘 Fn 𝑁) |
| 20 | | f1ocnv 5520 |
. . . . . . . . . 10
⊢ (ℎ:𝑁–1-1-onto→ω → ◡ℎ:ω–1-1-onto→𝑁) |
| 21 | 20 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) → ◡ℎ:ω–1-1-onto→𝑁) |
| 22 | | f1of 5507 |
. . . . . . . . 9
⊢ (◡ℎ:ω–1-1-onto→𝑁 → ◡ℎ:ω⟶𝑁) |
| 23 | 21, 22 | syl 14 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) → ◡ℎ:ω⟶𝑁) |
| 24 | | fnfco 5435 |
. . . . . . . 8
⊢ ((𝑘 Fn 𝑁 ∧ ◡ℎ:ω⟶𝑁) → (𝑘 ∘ ◡ℎ) Fn ω) |
| 25 | 19, 23, 24 | syl2anc 411 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) → (𝑘 ∘ ◡ℎ) Fn ω) |
| 26 | 23 | ffvelcdmda 5700 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → (◡ℎ‘𝑝) ∈ 𝑁) |
| 27 | | cc3.m |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ 𝐹) |
| 28 | 27 | ad3antrrr 492 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → ∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ 𝐹) |
| 29 | | nfcsb1v 3117 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹 |
| 30 | 29 | nfcri 2333 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛 𝑤 ∈ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹 |
| 31 | 30 | nfex 1651 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛∃𝑤 𝑤 ∈ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹 |
| 32 | | csbeq1a 3093 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (◡ℎ‘𝑝) → 𝐹 = ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹) |
| 33 | 32 | eleq2d 2266 |
. . . . . . . . . . . 12
⊢ (𝑛 = (◡ℎ‘𝑝) → (𝑤 ∈ 𝐹 ↔ 𝑤 ∈ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹)) |
| 34 | 33 | exbidv 1839 |
. . . . . . . . . . 11
⊢ (𝑛 = (◡ℎ‘𝑝) → (∃𝑤 𝑤 ∈ 𝐹 ↔ ∃𝑤 𝑤 ∈ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹)) |
| 35 | 31, 34 | rspc 2862 |
. . . . . . . . . 10
⊢ ((◡ℎ‘𝑝) ∈ 𝑁 → (∀𝑛 ∈ 𝑁 ∃𝑤 𝑤 ∈ 𝐹 → ∃𝑤 𝑤 ∈ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹)) |
| 36 | 26, 28, 35 | sylc 62 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → ∃𝑤 𝑤 ∈ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹) |
| 37 | | fvco3 5635 |
. . . . . . . . . . . . 13
⊢ ((◡ℎ:ω⟶𝑁 ∧ 𝑝 ∈ ω) → ((𝑘 ∘ ◡ℎ)‘𝑝) = (𝑘‘(◡ℎ‘𝑝))) |
| 38 | 23, 37 | sylan 283 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → ((𝑘 ∘ ◡ℎ)‘𝑝) = (𝑘‘(◡ℎ‘𝑝))) |
| 39 | | simpllr 534 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) |
| 40 | 39 | fveq1d 5563 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → (𝑘‘(◡ℎ‘𝑝)) = ((𝑛 ∈ 𝑁 ↦ 𝐹)‘(◡ℎ‘𝑝))) |
| 41 | 11 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → ∀𝑛 ∈ 𝑁 𝐹 ∈ V) |
| 42 | 29 | nfel1 2350 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑛⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹 ∈ V |
| 43 | 32 | eleq1d 2265 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (◡ℎ‘𝑝) → (𝐹 ∈ V ↔ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹 ∈ V)) |
| 44 | 42, 43 | rspc 2862 |
. . . . . . . . . . . . . . 15
⊢ ((◡ℎ‘𝑝) ∈ 𝑁 → (∀𝑛 ∈ 𝑁 𝐹 ∈ V → ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹 ∈ V)) |
| 45 | 26, 41, 44 | sylc 62 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹 ∈ V) |
| 46 | 12 | fvmpts 5642 |
. . . . . . . . . . . . . 14
⊢ (((◡ℎ‘𝑝) ∈ 𝑁 ∧ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹 ∈ V) → ((𝑛 ∈ 𝑁 ↦ 𝐹)‘(◡ℎ‘𝑝)) = ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹) |
| 47 | 26, 45, 46 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → ((𝑛 ∈ 𝑁 ↦ 𝐹)‘(◡ℎ‘𝑝)) = ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹) |
| 48 | 40, 47 | eqtrd 2229 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → (𝑘‘(◡ℎ‘𝑝)) = ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹) |
| 49 | 38, 48 | eqtrd 2229 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → ((𝑘 ∘ ◡ℎ)‘𝑝) = ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹) |
| 50 | 49 | eleq2d 2266 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → (𝑤 ∈ ((𝑘 ∘ ◡ℎ)‘𝑝) ↔ 𝑤 ∈ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹)) |
| 51 | 50 | exbidv 1839 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → (∃𝑤 𝑤 ∈ ((𝑘 ∘ ◡ℎ)‘𝑝) ↔ ∃𝑤 𝑤 ∈ ⦋(◡ℎ‘𝑝) / 𝑛⦌𝐹)) |
| 52 | 36, 51 | mpbird 167 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ 𝑝 ∈ ω) → ∃𝑤 𝑤 ∈ ((𝑘 ∘ ◡ℎ)‘𝑝)) |
| 53 | 52 | ralrimiva 2570 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) → ∀𝑝 ∈ ω ∃𝑤 𝑤 ∈ ((𝑘 ∘ ◡ℎ)‘𝑝)) |
| 54 | 10, 25, 53 | cc2 7350 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) → ∃𝑔(𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) |
| 55 | | simprl 529 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) → 𝑔 Fn ω) |
| 56 | | f1of 5507 |
. . . . . . . . . 10
⊢ (ℎ:𝑁–1-1-onto→ω → ℎ:𝑁⟶ω) |
| 57 | 56 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) → ℎ:𝑁⟶ω) |
| 58 | 57 | adantr 276 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) → ℎ:𝑁⟶ω) |
| 59 | | fnfco 5435 |
. . . . . . . 8
⊢ ((𝑔 Fn ω ∧ ℎ:𝑁⟶ω) → (𝑔 ∘ ℎ) Fn 𝑁) |
| 60 | 55, 58, 59 | syl2anc 411 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) → (𝑔 ∘ ℎ) Fn 𝑁) |
| 61 | | nfv 1542 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝜑 |
| 62 | | nfmpt1 4127 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝑛 ∈ 𝑁 ↦ 𝐹) |
| 63 | 62 | nfeq2 2351 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) |
| 64 | 61, 63 | nfan 1579 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) |
| 65 | | nfv 1542 |
. . . . . . . . . 10
⊢
Ⅎ𝑛 ℎ:𝑁–1-1-onto→ω |
| 66 | 64, 65 | nfan 1579 |
. . . . . . . . 9
⊢
Ⅎ𝑛((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) |
| 67 | | nfv 1542 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) |
| 68 | 66, 67 | nfan 1579 |
. . . . . . . 8
⊢
Ⅎ𝑛(((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) |
| 69 | | fvco3 5635 |
. . . . . . . . . . . . . 14
⊢ ((ℎ:𝑁⟶ω ∧ 𝑛 ∈ 𝑁) → ((𝑔 ∘ ℎ)‘𝑛) = (𝑔‘(ℎ‘𝑛))) |
| 70 | 58, 69 | sylan 283 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ((𝑔 ∘ ℎ)‘𝑛) = (𝑔‘(ℎ‘𝑛))) |
| 71 | | fveq2 5561 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (ℎ‘𝑛) → (𝑔‘𝑚) = (𝑔‘(ℎ‘𝑛))) |
| 72 | | fveq2 5561 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (ℎ‘𝑛) → ((𝑘 ∘ ◡ℎ)‘𝑚) = ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))) |
| 73 | 71, 72 | eleq12d 2267 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (ℎ‘𝑛) → ((𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚) ↔ (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)))) |
| 74 | | simplrr 536 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚)) |
| 75 | 58 | ffvelcdmda 5700 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → (ℎ‘𝑛) ∈ ω) |
| 76 | 73, 74, 75 | rspcdva 2873 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → (𝑔‘(ℎ‘𝑛)) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))) |
| 77 | 70, 76 | eqeltrd 2273 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ((𝑔 ∘ ℎ)‘𝑛) ∈ ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛))) |
| 78 | 23 | ad2antrr 488 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ◡ℎ:ω⟶𝑁) |
| 79 | | fvco3 5635 |
. . . . . . . . . . . . 13
⊢ ((◡ℎ:ω⟶𝑁 ∧ (ℎ‘𝑛) ∈ ω) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = (𝑘‘(◡ℎ‘(ℎ‘𝑛)))) |
| 80 | 78, 75, 79 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ((𝑘 ∘ ◡ℎ)‘(ℎ‘𝑛)) = (𝑘‘(◡ℎ‘(ℎ‘𝑛)))) |
| 81 | 77, 80 | eleqtrd 2275 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ((𝑔 ∘ ℎ)‘𝑛) ∈ (𝑘‘(◡ℎ‘(ℎ‘𝑛)))) |
| 82 | | simpllr 534 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ℎ:𝑁–1-1-onto→ω) |
| 83 | | simpr 110 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → 𝑛 ∈ 𝑁) |
| 84 | | f1ocnvfv1 5827 |
. . . . . . . . . . . . 13
⊢ ((ℎ:𝑁–1-1-onto→ω ∧ 𝑛 ∈ 𝑁) → (◡ℎ‘(ℎ‘𝑛)) = 𝑛) |
| 85 | 82, 83, 84 | syl2anc 411 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → (◡ℎ‘(ℎ‘𝑛)) = 𝑛) |
| 86 | 85 | fveq2d 5565 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → (𝑘‘(◡ℎ‘(ℎ‘𝑛))) = (𝑘‘𝑛)) |
| 87 | 81, 86 | eleqtrd 2275 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ((𝑔 ∘ ℎ)‘𝑛) ∈ (𝑘‘𝑛)) |
| 88 | 16 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) |
| 89 | 88 | fveq1d 5563 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → (𝑘‘𝑛) = ((𝑛 ∈ 𝑁 ↦ 𝐹)‘𝑛)) |
| 90 | 11 | r19.21bi 2585 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐹 ∈ V) |
| 91 | 90 | ad5ant15 521 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → 𝐹 ∈ V) |
| 92 | 12 | fvmpt2 5648 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ 𝑁 ∧ 𝐹 ∈ V) → ((𝑛 ∈ 𝑁 ↦ 𝐹)‘𝑛) = 𝐹) |
| 93 | 83, 91, 92 | syl2anc 411 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ((𝑛 ∈ 𝑁 ↦ 𝐹)‘𝑛) = 𝐹) |
| 94 | 89, 93 | eqtrd 2229 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → (𝑘‘𝑛) = 𝐹) |
| 95 | 87, 94 | eleqtrd 2275 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) ∧ 𝑛 ∈ 𝑁) → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹) |
| 96 | 95 | ex 115 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) → (𝑛 ∈ 𝑁 → ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)) |
| 97 | 68, 96 | ralrimi 2568 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) → ∀𝑛 ∈ 𝑁 ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹) |
| 98 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑔 ∈ V |
| 99 | | vex 2766 |
. . . . . . . . 9
⊢ ℎ ∈ V |
| 100 | 98, 99 | coex 5216 |
. . . . . . . 8
⊢ (𝑔 ∘ ℎ) ∈ V |
| 101 | | fneq1 5347 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → (𝑓 Fn 𝑁 ↔ (𝑔 ∘ ℎ) Fn 𝑁)) |
| 102 | | fveq1 5560 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ∘ ℎ) → (𝑓‘𝑛) = ((𝑔 ∘ ℎ)‘𝑛)) |
| 103 | 102 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓‘𝑛) ∈ 𝐹 ↔ ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)) |
| 104 | 103 | ralbidv 2497 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → (∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹 ↔ ∀𝑛 ∈ 𝑁 ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹)) |
| 105 | 101, 104 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹) ↔ ((𝑔 ∘ ℎ) Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹))) |
| 106 | 100, 105 | spcev 2859 |
. . . . . . 7
⊢ (((𝑔 ∘ ℎ) Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 ((𝑔 ∘ ℎ)‘𝑛) ∈ 𝐹) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹)) |
| 107 | 60, 97, 106 | syl2anc 411 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) ∧ (𝑔 Fn ω ∧ ∀𝑚 ∈ ω (𝑔‘𝑚) ∈ ((𝑘 ∘ ◡ℎ)‘𝑚))) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹)) |
| 108 | 54, 107 | exlimddv 1913 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) ∧ ℎ:𝑁–1-1-onto→ω) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹)) |
| 109 | 8, 108 | exlimddv 1913 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹)) → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹)) |
| 110 | 109 | expcom 116 |
. . 3
⊢ (𝑘 = (𝑛 ∈ 𝑁 ↦ 𝐹) → (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹))) |
| 111 | 110 | vtocleg 2835 |
. 2
⊢ ((𝑛 ∈ 𝑁 ↦ 𝐹) ∈ V → (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹))) |
| 112 | 5, 111 | mpcom 36 |
1
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑁 ∧ ∀𝑛 ∈ 𝑁 (𝑓‘𝑛) ∈ 𝐹)) |