ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucexmid GIF version

Theorem ordpwsucexmid 4570
Description: The subset in ordpwsucss 4567 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
Hypothesis
Ref Expression
ordpwsucexmid.1 𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On)
Assertion
Ref Expression
ordpwsucexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ordpwsucexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0elpw 4165 . . . . 5 ∅ ∈ 𝒫 {𝑧 ∈ {∅} ∣ 𝜑}
2 0elon 4393 . . . . 5 ∅ ∈ On
3 elin 3319 . . . . 5 (∅ ∈ (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On) ↔ (∅ ∈ 𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∅ ∈ On))
41, 2, 3mpbir2an 942 . . . 4 ∅ ∈ (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)
5 ordtriexmidlem 4519 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
6 suceq 4403 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑧 ∈ {∅} ∣ 𝜑})
7 pweq 3579 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → 𝒫 𝑥 = 𝒫 {𝑧 ∈ {∅} ∣ 𝜑})
87ineq1d 3336 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝒫 𝑥 ∩ On) = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On))
96, 8eqeq12d 2192 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (suc 𝑥 = (𝒫 𝑥 ∩ On) ↔ suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)))
10 ordpwsucexmid.1 . . . . . 6 𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On)
119, 10vtoclri 2813 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On))
125, 11ax-mp 5 . . . 4 suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)
134, 12eleqtrri 2253 . . 3 ∅ ∈ suc {𝑧 ∈ {∅} ∣ 𝜑}
14 elsuci 4404 . . 3 (∅ ∈ suc {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑}))
1513, 14ax-mp 5 . 2 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑})
16 0ex 4131 . . . . . 6 ∅ ∈ V
1716snid 3624 . . . . 5 ∅ ∈ {∅}
18 biidd 172 . . . . . 6 (𝑧 = ∅ → (𝜑𝜑))
1918elrab3 2895 . . . . 5 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2017, 19ax-mp 5 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2120biimpi 120 . . 3 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
22 ordtriexmidlem2 4520 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
2322eqcoms 2180 . . 3 (∅ = {𝑧 ∈ {∅} ∣ 𝜑} → ¬ 𝜑)
2421, 23orim12i 759 . 2 ((∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
2515, 24ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 708   = wceq 1353  wcel 2148  wral 2455  {crab 2459  cin 3129  c0 3423  𝒫 cpw 3576  {csn 3593  Oncon0 4364  suc csuc 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-uni 3811  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator