ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucexmid GIF version

Theorem ordpwsucexmid 4352
Description: The subset in ordpwsucss 4349 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
Hypothesis
Ref Expression
ordpwsucexmid.1 𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On)
Assertion
Ref Expression
ordpwsucexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ordpwsucexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0elpw 3967 . . . . 5 ∅ ∈ 𝒫 {𝑧 ∈ {∅} ∣ 𝜑}
2 0elon 4186 . . . . 5 ∅ ∈ On
3 elin 3169 . . . . 5 (∅ ∈ (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On) ↔ (∅ ∈ 𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∅ ∈ On))
41, 2, 3mpbir2an 886 . . . 4 ∅ ∈ (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)
5 ordtriexmidlem 4302 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
6 suceq 4196 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑧 ∈ {∅} ∣ 𝜑})
7 pweq 3412 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → 𝒫 𝑥 = 𝒫 {𝑧 ∈ {∅} ∣ 𝜑})
87ineq1d 3186 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝒫 𝑥 ∩ On) = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On))
96, 8eqeq12d 2099 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (suc 𝑥 = (𝒫 𝑥 ∩ On) ↔ suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)))
10 ordpwsucexmid.1 . . . . . 6 𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On)
119, 10vtoclri 2686 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On))
125, 11ax-mp 7 . . . 4 suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)
134, 12eleqtrri 2160 . . 3 ∅ ∈ suc {𝑧 ∈ {∅} ∣ 𝜑}
14 elsuci 4197 . . 3 (∅ ∈ suc {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑}))
1513, 14ax-mp 7 . 2 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑})
16 0ex 3934 . . . . . 6 ∅ ∈ V
1716snid 3452 . . . . 5 ∅ ∈ {∅}
18 biidd 170 . . . . . 6 (𝑧 = ∅ → (𝜑𝜑))
1918elrab3 2762 . . . . 5 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2017, 19ax-mp 7 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2120biimpi 118 . . 3 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
22 ordtriexmidlem2 4303 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
2322eqcoms 2088 . . 3 (∅ = {𝑧 ∈ {∅} ∣ 𝜑} → ¬ 𝜑)
2421, 23orim12i 709 . 2 ((∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
2515, 24ax-mp 7 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 103  wo 662   = wceq 1287  wcel 1436  wral 2355  {crab 2359  cin 2985  c0 3272  𝒫 cpw 3409  {csn 3425  Oncon0 4157  suc csuc 4159
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-nul 3933  ax-pow 3977
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2616  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-uni 3631  df-tr 3905  df-iord 4160  df-on 4162  df-suc 4165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator