ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucexmid GIF version

Theorem ordpwsucexmid 4602
Description: The subset in ordpwsucss 4599 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
Hypothesis
Ref Expression
ordpwsucexmid.1 𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On)
Assertion
Ref Expression
ordpwsucexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ordpwsucexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0elpw 4193 . . . . 5 ∅ ∈ 𝒫 {𝑧 ∈ {∅} ∣ 𝜑}
2 0elon 4423 . . . . 5 ∅ ∈ On
3 elin 3342 . . . . 5 (∅ ∈ (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On) ↔ (∅ ∈ 𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∅ ∈ On))
41, 2, 3mpbir2an 944 . . . 4 ∅ ∈ (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)
5 ordtriexmidlem 4551 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
6 suceq 4433 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑧 ∈ {∅} ∣ 𝜑})
7 pweq 3604 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → 𝒫 𝑥 = 𝒫 {𝑧 ∈ {∅} ∣ 𝜑})
87ineq1d 3359 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝒫 𝑥 ∩ On) = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On))
96, 8eqeq12d 2208 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (suc 𝑥 = (𝒫 𝑥 ∩ On) ↔ suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)))
10 ordpwsucexmid.1 . . . . . 6 𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On)
119, 10vtoclri 2835 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On))
125, 11ax-mp 5 . . . 4 suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)
134, 12eleqtrri 2269 . . 3 ∅ ∈ suc {𝑧 ∈ {∅} ∣ 𝜑}
14 elsuci 4434 . . 3 (∅ ∈ suc {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑}))
1513, 14ax-mp 5 . 2 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑})
16 0ex 4156 . . . . . 6 ∅ ∈ V
1716snid 3649 . . . . 5 ∅ ∈ {∅}
18 biidd 172 . . . . . 6 (𝑧 = ∅ → (𝜑𝜑))
1918elrab3 2917 . . . . 5 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2017, 19ax-mp 5 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2120biimpi 120 . . 3 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
22 ordtriexmidlem2 4552 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
2322eqcoms 2196 . . 3 (∅ = {𝑧 ∈ {∅} ∣ 𝜑} → ¬ 𝜑)
2421, 23orim12i 760 . 2 ((∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
2515, 24ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 709   = wceq 1364  wcel 2164  wral 2472  {crab 2476  cin 3152  c0 3446  𝒫 cpw 3601  {csn 3618  Oncon0 4394  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator