ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordpwsucexmid GIF version

Theorem ordpwsucexmid 4639
Description: The subset in ordpwsucss 4636 cannot be equality. That is, strengthening it to equality implies excluded middle. (Contributed by Jim Kingdon, 30-Jul-2019.)
Hypothesis
Ref Expression
ordpwsucexmid.1 𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On)
Assertion
Ref Expression
ordpwsucexmid (𝜑 ∨ ¬ 𝜑)
Distinct variable group:   𝜑,𝑥

Proof of Theorem ordpwsucexmid
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 0elpw 4227 . . . . 5 ∅ ∈ 𝒫 {𝑧 ∈ {∅} ∣ 𝜑}
2 0elon 4460 . . . . 5 ∅ ∈ On
3 elin 3367 . . . . 5 (∅ ∈ (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On) ↔ (∅ ∈ 𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∧ ∅ ∈ On))
41, 2, 3mpbir2an 947 . . . 4 ∅ ∈ (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)
5 ordtriexmidlem 4588 . . . . 5 {𝑧 ∈ {∅} ∣ 𝜑} ∈ On
6 suceq 4470 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → suc 𝑥 = suc {𝑧 ∈ {∅} ∣ 𝜑})
7 pweq 3632 . . . . . . . 8 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → 𝒫 𝑥 = 𝒫 {𝑧 ∈ {∅} ∣ 𝜑})
87ineq1d 3384 . . . . . . 7 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (𝒫 𝑥 ∩ On) = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On))
96, 8eqeq12d 2224 . . . . . 6 (𝑥 = {𝑧 ∈ {∅} ∣ 𝜑} → (suc 𝑥 = (𝒫 𝑥 ∩ On) ↔ suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)))
10 ordpwsucexmid.1 . . . . . 6 𝑥 ∈ On suc 𝑥 = (𝒫 𝑥 ∩ On)
119, 10vtoclri 2858 . . . . 5 ({𝑧 ∈ {∅} ∣ 𝜑} ∈ On → suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On))
125, 11ax-mp 5 . . . 4 suc {𝑧 ∈ {∅} ∣ 𝜑} = (𝒫 {𝑧 ∈ {∅} ∣ 𝜑} ∩ On)
134, 12eleqtrri 2285 . . 3 ∅ ∈ suc {𝑧 ∈ {∅} ∣ 𝜑}
14 elsuci 4471 . . 3 (∅ ∈ suc {𝑧 ∈ {∅} ∣ 𝜑} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑}))
1513, 14ax-mp 5 . 2 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑})
16 0ex 4190 . . . . . 6 ∅ ∈ V
1716snid 3677 . . . . 5 ∅ ∈ {∅}
18 biidd 172 . . . . . 6 (𝑧 = ∅ → (𝜑𝜑))
1918elrab3 2940 . . . . 5 (∅ ∈ {∅} → (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑))
2017, 19ax-mp 5 . . . 4 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ↔ 𝜑)
2120biimpi 120 . . 3 (∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} → 𝜑)
22 ordtriexmidlem2 4589 . . . 4 ({𝑧 ∈ {∅} ∣ 𝜑} = ∅ → ¬ 𝜑)
2322eqcoms 2212 . . 3 (∅ = {𝑧 ∈ {∅} ∣ 𝜑} → ¬ 𝜑)
2421, 23orim12i 763 . 2 ((∅ ∈ {𝑧 ∈ {∅} ∣ 𝜑} ∨ ∅ = {𝑧 ∈ {∅} ∣ 𝜑}) → (𝜑 ∨ ¬ 𝜑))
2515, 24ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105  wo 712   = wceq 1375  wcel 2180  wral 2488  {crab 2492  cin 3176  c0 3471  𝒫 cpw 3629  {csn 3646  Oncon0 4431  suc csuc 4433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-uni 3868  df-tr 4162  df-iord 4434  df-on 4436  df-suc 4439
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator