Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclga | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | vtoclga.2 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
5 | 1, 2, 3, 4 | vtoclgaf 2795 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: vtoclri 2805 ssuni 3816 ordtriexmid 4503 onsucsssucexmid 4509 tfis3 4568 fvmpt3 5573 fvmptssdm 5578 fnressn 5680 fressnfv 5681 caovord 6022 caovimo 6044 tfrlem1 6285 nnacl 6457 nnmcl 6458 nnacom 6461 nnaass 6462 nndi 6463 nnmass 6464 nnmsucr 6465 nnmcom 6466 nnsucsssuc 6469 nntri3or 6470 nnaordi 6485 nnaword 6488 nnmordi 6493 nnaordex 6505 ixpfn 6680 findcard 6864 findcard2 6865 findcard2s 6866 exmidomni 7116 indpi 7297 prarloclem3 7452 uzind4s2 9543 cnref1o 9602 frec2uzrdg 10358 expcl2lemap 10481 seq3coll 10770 climub 11300 climserle 11301 fsum3cvg 11334 summodclem2a 11337 prodfap0 11501 prodfrecap 11502 fproddccvg 11528 alginv 11994 algcvg 11995 algcvga 11998 algfx 11999 prmind2 12067 prmpwdvds 12300 lgsdir2lem4 13691 |
Copyright terms: Public domain | W3C validator |