| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclga | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtoclga.2 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 1, 2, 3, 4 | vtoclgaf 2838 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: vtoclri 2848 ssuni 3872 ordtriexmid 4569 onsucsssucexmid 4575 tfis3 4634 fvmpt3 5658 fvmptssdm 5664 fnressn 5770 fressnfv 5771 caovord 6118 caovimo 6140 tfrlem1 6394 nnacl 6566 nnmcl 6567 nnacom 6570 nnaass 6571 nndi 6572 nnmass 6573 nnmsucr 6574 nnmcom 6575 nnsucsssuc 6578 nntri3or 6579 nnaordi 6594 nnaword 6597 nnmordi 6602 nnaordex 6614 ixpfn 6791 findcard 6985 findcard2 6986 findcard2s 6987 exmidomni 7244 indpi 7455 prarloclem3 7610 uzind4s2 9712 cnref1o 9772 frec2uzrdg 10554 expcl2lemap 10696 seq3coll 10987 climub 11655 climserle 11656 fsum3cvg 11689 summodclem2a 11692 prodfap0 11856 prodfrecap 11857 fproddccvg 11883 alginv 12369 algcvg 12370 algcvga 12373 algfx 12374 prmind2 12442 prmpwdvds 12678 lgsdir2lem4 15508 |
| Copyright terms: Public domain | W3C validator |