Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclga | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | vtoclga.2 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
5 | 1, 2, 3, 4 | vtoclgaf 2791 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: vtoclri 2801 ssuni 3811 ordtriexmid 4498 onsucsssucexmid 4504 tfis3 4563 fvmpt3 5565 fvmptssdm 5570 fnressn 5671 fressnfv 5672 caovord 6013 caovimo 6035 tfrlem1 6276 nnacl 6448 nnmcl 6449 nnacom 6452 nnaass 6453 nndi 6454 nnmass 6455 nnmsucr 6456 nnmcom 6457 nnsucsssuc 6460 nntri3or 6461 nnaordi 6476 nnaword 6479 nnmordi 6484 nnaordex 6495 ixpfn 6670 findcard 6854 findcard2 6855 findcard2s 6856 exmidomni 7106 indpi 7283 prarloclem3 7438 uzind4s2 9529 cnref1o 9588 frec2uzrdg 10344 expcl2lemap 10467 seq3coll 10755 climub 11285 climserle 11286 fsum3cvg 11319 summodclem2a 11322 prodfap0 11486 prodfrecap 11487 fproddccvg 11513 alginv 11979 algcvg 11980 algcvga 11983 algfx 11984 prmind2 12052 prmpwdvds 12285 lgsdir2lem4 13572 |
Copyright terms: Public domain | W3C validator |