| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclga | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtoclga.2 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 1, 2, 3, 4 | vtoclgaf 2838 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: vtoclri 2848 ssuni 3872 ordtriexmid 4570 onsucsssucexmid 4576 tfis3 4635 fvmpt3 5660 fvmptssdm 5666 fnressn 5772 fressnfv 5773 caovord 6120 caovimo 6142 tfrlem1 6396 nnacl 6568 nnmcl 6569 nnacom 6572 nnaass 6573 nndi 6574 nnmass 6575 nnmsucr 6576 nnmcom 6577 nnsucsssuc 6580 nntri3or 6581 nnaordi 6596 nnaword 6599 nnmordi 6604 nnaordex 6616 ixpfn 6793 findcard 6987 findcard2 6988 findcard2s 6989 exmidomni 7246 indpi 7457 prarloclem3 7612 uzind4s2 9714 cnref1o 9774 frec2uzrdg 10556 expcl2lemap 10698 seq3coll 10989 climub 11688 climserle 11689 fsum3cvg 11722 summodclem2a 11725 prodfap0 11889 prodfrecap 11890 fproddccvg 11916 alginv 12402 algcvg 12403 algcvga 12406 algfx 12407 prmind2 12475 prmpwdvds 12711 lgsdir2lem4 15541 |
| Copyright terms: Public domain | W3C validator |