| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclga | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
| Ref | Expression |
|---|---|
| vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtoclga.2 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
| 5 | 1, 2, 3, 4 | vtoclgaf 2829 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: vtoclri 2839 ssuni 3861 ordtriexmid 4557 onsucsssucexmid 4563 tfis3 4622 fvmpt3 5640 fvmptssdm 5646 fnressn 5748 fressnfv 5749 caovord 6095 caovimo 6117 tfrlem1 6366 nnacl 6538 nnmcl 6539 nnacom 6542 nnaass 6543 nndi 6544 nnmass 6545 nnmsucr 6546 nnmcom 6547 nnsucsssuc 6550 nntri3or 6551 nnaordi 6566 nnaword 6569 nnmordi 6574 nnaordex 6586 ixpfn 6763 findcard 6949 findcard2 6950 findcard2s 6951 exmidomni 7208 indpi 7409 prarloclem3 7564 uzind4s2 9665 cnref1o 9725 frec2uzrdg 10501 expcl2lemap 10643 seq3coll 10934 climub 11509 climserle 11510 fsum3cvg 11543 summodclem2a 11546 prodfap0 11710 prodfrecap 11711 fproddccvg 11737 alginv 12215 algcvg 12216 algcvga 12219 algfx 12220 prmind2 12288 prmpwdvds 12524 lgsdir2lem4 15272 |
| Copyright terms: Public domain | W3C validator |