![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclga | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
vtoclga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclga.2 | ⊢ (𝑥 ∈ 𝐵 → 𝜑) |
Ref | Expression |
---|---|
vtoclga | ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | vtoclga.2 | . 2 ⊢ (𝑥 ∈ 𝐵 → 𝜑) | |
5 | 1, 2, 3, 4 | vtoclgaf 2826 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: vtoclri 2836 ssuni 3858 ordtriexmid 4554 onsucsssucexmid 4560 tfis3 4619 fvmpt3 5637 fvmptssdm 5643 fnressn 5745 fressnfv 5746 caovord 6092 caovimo 6114 tfrlem1 6363 nnacl 6535 nnmcl 6536 nnacom 6539 nnaass 6540 nndi 6541 nnmass 6542 nnmsucr 6543 nnmcom 6544 nnsucsssuc 6547 nntri3or 6548 nnaordi 6563 nnaword 6566 nnmordi 6571 nnaordex 6583 ixpfn 6760 findcard 6946 findcard2 6947 findcard2s 6948 exmidomni 7203 indpi 7404 prarloclem3 7559 uzind4s2 9659 cnref1o 9719 frec2uzrdg 10483 expcl2lemap 10625 seq3coll 10916 climub 11490 climserle 11491 fsum3cvg 11524 summodclem2a 11527 prodfap0 11691 prodfrecap 11692 fproddccvg 11718 alginv 12188 algcvg 12189 algcvga 12192 algfx 12193 prmind2 12261 prmpwdvds 12496 lgsdir2lem4 15188 |
Copyright terms: Public domain | W3C validator |