MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt23el Structured version   Visualization version   GIF version

Theorem hashgt23el 13974
Description: A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023.)
Assertion
Ref Expression
hashgt23el ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝑊(𝑏,𝑐)

Proof of Theorem hashgt23el
StepHypRef Expression
1 2pos 11916 . . . . . 6 0 < 2
2 0xr 10863 . . . . . . 7 0 ∈ ℝ*
3 2re 11887 . . . . . . . 8 2 ∈ ℝ
43rexri 10874 . . . . . . 7 2 ∈ ℝ*
5 hashxrcl 13907 . . . . . . 7 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
6 xrlttr 12713 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
72, 4, 5, 6mp3an12i 1467 . . . . . 6 (𝑉𝑊 → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
81, 7mpani 696 . . . . 5 (𝑉𝑊 → (2 < (♯‘𝑉) → 0 < (♯‘𝑉)))
9 hashgt0elex 13951 . . . . . 6 ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
109ex 416 . . . . 5 (𝑉𝑊 → (0 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
118, 10syld 47 . . . 4 (𝑉𝑊 → (2 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
1211imp 410 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
13 difexg 5209 . . . . 5 (𝑉𝑊 → (𝑉 ∖ {𝑎}) ∈ V)
14 difsnid 4713 . . . . . . . . . . . 12 (𝑎𝑉 → ((𝑉 ∖ {𝑎}) ∪ {𝑎}) = 𝑉)
1514fveq2d 6710 . . . . . . . . . . 11 (𝑎𝑉 → (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) = (♯‘𝑉))
1615breq2d 5055 . . . . . . . . . 10 (𝑎𝑉 → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
1716adantr 484 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
18 df-2 11876 . . . . . . . . . . . . 13 2 = (1 + 1)
1918breq1i 5050 . . . . . . . . . . . 12 (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})))
20 neldifsn 4695 . . . . . . . . . . . . . 14 ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})
21 1nn0 12089 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
22 hashunsnggt 13944 . . . . . . . . . . . . . . . 16 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉 ∧ 1 ∈ ℕ0) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2321, 22mp3anl3 1459 . . . . . . . . . . . . . . 15 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2413, 23sylanl1 680 . . . . . . . . . . . . . 14 (((𝑉𝑊𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2520, 24mpan2 691 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎𝑉) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2625biimp3ar 1472 . . . . . . . . . . . 12 ((𝑉𝑊𝑎𝑉 ∧ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
2719, 26syl3an3b 1407 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉 ∧ 2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
28273expia 1123 . . . . . . . . . 10 ((𝑉𝑊𝑎𝑉) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
2928ancoms 462 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
3017, 29sylbird 263 . . . . . . . 8 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘𝑉) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
31303impia 1119 . . . . . . 7 ((𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
32313expib 1124 . . . . . 6 (𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
33 1lt2 11984 . . . . . . . . . . 11 1 < 2
34 1xr 10875 . . . . . . . . . . . 12 1 ∈ ℝ*
35 xrlttr 12713 . . . . . . . . . . . 12 ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3634, 4, 5, 35mp3an12i 1467 . . . . . . . . . . 11 (𝑉𝑊 → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3733, 36mpani 696 . . . . . . . . . 10 (𝑉𝑊 → (2 < (♯‘𝑉) → 1 < (♯‘𝑉)))
3837imp 410 . . . . . . . . 9 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
39383adant1 1132 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
40 difsn 4701 . . . . . . . . . 10 𝑎𝑉 → (𝑉 ∖ {𝑎}) = 𝑉)
41403ad2ant1 1135 . . . . . . . . 9 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (𝑉 ∖ {𝑎}) = 𝑉)
4241fveq2d 6710 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (♯‘(𝑉 ∖ {𝑎})) = (♯‘𝑉))
4339, 42breqtrrd 5071 . . . . . . 7 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
44433expib 1124 . . . . . 6 𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
4532, 44pm2.61i 185 . . . . 5 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
46 hashgt12el 13972 . . . . 5 (((𝑉 ∖ {𝑎}) ∈ V ∧ 1 < (♯‘(𝑉 ∖ {𝑎}))) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4713, 45, 46syl2an2r 685 . . . 4 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4847alrimiv 1935 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
49 19.29r 1882 . . 3 ((∃𝑎 𝑎𝑉 ∧ ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
5012, 48, 49syl2anc 587 . 2 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
51 df-rex 3060 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
52 eldifsn 4690 . . . . . . . . 9 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
53 necom 2988 . . . . . . . . . 10 (𝑏𝑎𝑎𝑏)
5453anbi2i 626 . . . . . . . . 9 ((𝑏𝑉𝑏𝑎) ↔ (𝑏𝑉𝑎𝑏))
5552, 54bitri 278 . . . . . . . 8 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑎𝑏))
56 ax-5 1918 . . . . . . . . 9 (𝑎𝑏 → ∀𝑐 𝑎𝑏)
5756anim2i 620 . . . . . . . 8 ((𝑏𝑉𝑎𝑏) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
5855, 57sylbi 220 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
59 3anass 1097 . . . . . . . . . 10 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ (𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
6059exbii 1855 . . . . . . . . 9 (∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
61 df-rex 3060 . . . . . . . . . 10 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐))
62 eldifsn 4690 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑐𝑎))
63 necom 2988 . . . . . . . . . . . . . . 15 (𝑐𝑎𝑎𝑐)
6463anbi2i 626 . . . . . . . . . . . . . 14 ((𝑐𝑉𝑐𝑎) ↔ (𝑐𝑉𝑎𝑐))
6562, 64bitri 278 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑎𝑐))
6665anbi1i 627 . . . . . . . . . . . 12 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
67 df-3an 1091 . . . . . . . . . . . 12 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
6866, 67bitr4i 281 . . . . . . . . . . 11 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ (𝑐𝑉𝑎𝑐𝑏𝑐))
6968exbii 1855 . . . . . . . . . 10 (∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
7061, 69bitri 278 . . . . . . . . 9 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
71 df-rex 3060 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
7260, 70, 713bitr4i 306 . . . . . . . 8 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7372biimpi 219 . . . . . . 7 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7458, 73anim12i 616 . . . . . 6 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
75 alral 3070 . . . . . . . . . 10 (∀𝑐 𝑎𝑏 → ∀𝑐𝑉 𝑎𝑏)
7675anim1i 618 . . . . . . . . 9 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
77 r19.29 3169 . . . . . . . . 9 ((∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
78 3anass 1097 . . . . . . . . . . 11 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
7978biimpri 231 . . . . . . . . . 10 ((𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → (𝑎𝑏𝑎𝑐𝑏𝑐))
8079reximi 3159 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8176, 77, 803syl 18 . . . . . . . 8 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8281anim2i 620 . . . . . . 7 ((𝑏𝑉 ∧ (∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8382anassrs 471 . . . . . 6 (((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8474, 83syl 17 . . . . 5 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8584reximi2 3160 . . . 4 (∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8685reximi 3159 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8751, 86sylbir 238 . 2 (∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8850, 87syl 17 1 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089  wal 1541   = wceq 1543  wex 1787  wcel 2110  wne 2935  wral 3054  wrex 3055  Vcvv 3401  cdif 3854  cun 3855  {csn 4531   class class class wbr 5043  cfv 6369  (class class class)co 7202  0cc0 10712  1c1 10713   + caddc 10715  *cxr 10849   < clt 10850  2c2 11868  0cn0 12073  chash 13879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-xneg 12687  df-xadd 12688  df-fz 13079  df-hash 13880
This theorem is referenced by:  cusgr3cyclex  32783
  Copyright terms: Public domain W3C validator