MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt23el Structured version   Visualization version   GIF version

Theorem hashgt23el 14464
Description: A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023.)
Assertion
Ref Expression
hashgt23el ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝑊(𝑏,𝑐)

Proof of Theorem hashgt23el
StepHypRef Expression
1 2pos 12370 . . . . . 6 0 < 2
2 0xr 11309 . . . . . . 7 0 ∈ ℝ*
3 2re 12341 . . . . . . . 8 2 ∈ ℝ
43rexri 11320 . . . . . . 7 2 ∈ ℝ*
5 hashxrcl 14397 . . . . . . 7 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
6 xrlttr 13183 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
72, 4, 5, 6mp3an12i 1466 . . . . . 6 (𝑉𝑊 → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
81, 7mpani 696 . . . . 5 (𝑉𝑊 → (2 < (♯‘𝑉) → 0 < (♯‘𝑉)))
9 hashgt0elex 14441 . . . . . 6 ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
109ex 412 . . . . 5 (𝑉𝑊 → (0 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
118, 10syld 47 . . . 4 (𝑉𝑊 → (2 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
1211imp 406 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
13 difexg 5328 . . . . 5 (𝑉𝑊 → (𝑉 ∖ {𝑎}) ∈ V)
14 difsnid 4809 . . . . . . . . . . . 12 (𝑎𝑉 → ((𝑉 ∖ {𝑎}) ∪ {𝑎}) = 𝑉)
1514fveq2d 6909 . . . . . . . . . . 11 (𝑎𝑉 → (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) = (♯‘𝑉))
1615breq2d 5154 . . . . . . . . . 10 (𝑎𝑉 → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
1716adantr 480 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
18 df-2 12330 . . . . . . . . . . . . 13 2 = (1 + 1)
1918breq1i 5149 . . . . . . . . . . . 12 (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})))
20 neldifsn 4791 . . . . . . . . . . . . . 14 ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})
21 1nn0 12544 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
22 hashunsnggt 14434 . . . . . . . . . . . . . . . 16 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉 ∧ 1 ∈ ℕ0) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2321, 22mp3anl3 1458 . . . . . . . . . . . . . . 15 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2413, 23sylanl1 680 . . . . . . . . . . . . . 14 (((𝑉𝑊𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2520, 24mpan2 691 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎𝑉) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2625biimp3ar 1471 . . . . . . . . . . . 12 ((𝑉𝑊𝑎𝑉 ∧ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
2719, 26syl3an3b 1406 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉 ∧ 2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
28273expia 1121 . . . . . . . . . 10 ((𝑉𝑊𝑎𝑉) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
2928ancoms 458 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
3017, 29sylbird 260 . . . . . . . 8 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘𝑉) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
31303impia 1117 . . . . . . 7 ((𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
32313expib 1122 . . . . . 6 (𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
33 1lt2 12438 . . . . . . . . . . 11 1 < 2
34 1xr 11321 . . . . . . . . . . . 12 1 ∈ ℝ*
35 xrlttr 13183 . . . . . . . . . . . 12 ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3634, 4, 5, 35mp3an12i 1466 . . . . . . . . . . 11 (𝑉𝑊 → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3733, 36mpani 696 . . . . . . . . . 10 (𝑉𝑊 → (2 < (♯‘𝑉) → 1 < (♯‘𝑉)))
3837imp 406 . . . . . . . . 9 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
39383adant1 1130 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
40 difsn 4797 . . . . . . . . . 10 𝑎𝑉 → (𝑉 ∖ {𝑎}) = 𝑉)
41403ad2ant1 1133 . . . . . . . . 9 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (𝑉 ∖ {𝑎}) = 𝑉)
4241fveq2d 6909 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (♯‘(𝑉 ∖ {𝑎})) = (♯‘𝑉))
4339, 42breqtrrd 5170 . . . . . . 7 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
44433expib 1122 . . . . . 6 𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
4532, 44pm2.61i 182 . . . . 5 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
46 hashgt12el 14462 . . . . 5 (((𝑉 ∖ {𝑎}) ∈ V ∧ 1 < (♯‘(𝑉 ∖ {𝑎}))) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4713, 45, 46syl2an2r 685 . . . 4 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4847alrimiv 1926 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
49 19.29r 1873 . . 3 ((∃𝑎 𝑎𝑉 ∧ ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
5012, 48, 49syl2anc 584 . 2 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
51 df-rex 3070 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
52 eldifsn 4785 . . . . . . . . 9 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
53 necom 2993 . . . . . . . . . 10 (𝑏𝑎𝑎𝑏)
5453anbi2i 623 . . . . . . . . 9 ((𝑏𝑉𝑏𝑎) ↔ (𝑏𝑉𝑎𝑏))
5552, 54bitri 275 . . . . . . . 8 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑎𝑏))
56 ax-5 1909 . . . . . . . . 9 (𝑎𝑏 → ∀𝑐 𝑎𝑏)
5756anim2i 617 . . . . . . . 8 ((𝑏𝑉𝑎𝑏) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
5855, 57sylbi 217 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
59 3anass 1094 . . . . . . . . . 10 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ (𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
6059exbii 1847 . . . . . . . . 9 (∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
61 df-rex 3070 . . . . . . . . . 10 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐))
62 eldifsn 4785 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑐𝑎))
63 necom 2993 . . . . . . . . . . . . . . 15 (𝑐𝑎𝑎𝑐)
6463anbi2i 623 . . . . . . . . . . . . . 14 ((𝑐𝑉𝑐𝑎) ↔ (𝑐𝑉𝑎𝑐))
6562, 64bitri 275 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑎𝑐))
6665anbi1i 624 . . . . . . . . . . . 12 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
67 df-3an 1088 . . . . . . . . . . . 12 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
6866, 67bitr4i 278 . . . . . . . . . . 11 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ (𝑐𝑉𝑎𝑐𝑏𝑐))
6968exbii 1847 . . . . . . . . . 10 (∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
7061, 69bitri 275 . . . . . . . . 9 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
71 df-rex 3070 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
7260, 70, 713bitr4i 303 . . . . . . . 8 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7372biimpi 216 . . . . . . 7 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7458, 73anim12i 613 . . . . . 6 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
75 alral 3074 . . . . . . . . . 10 (∀𝑐 𝑎𝑏 → ∀𝑐𝑉 𝑎𝑏)
7675anim1i 615 . . . . . . . . 9 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
77 r19.29 3113 . . . . . . . . 9 ((∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
78 3anass 1094 . . . . . . . . . . 11 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
7978biimpri 228 . . . . . . . . . 10 ((𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → (𝑎𝑏𝑎𝑐𝑏𝑐))
8079reximi 3083 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8176, 77, 803syl 18 . . . . . . . 8 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8281anim2i 617 . . . . . . 7 ((𝑏𝑉 ∧ (∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8382anassrs 467 . . . . . 6 (((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8474, 83syl 17 . . . . 5 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8584reximi2 3078 . . . 4 (∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8685reximi 3083 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8751, 86sylbir 235 . 2 (∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8850, 87syl 17 1 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1537   = wceq 1539  wex 1778  wcel 2107  wne 2939  wral 3060  wrex 3069  Vcvv 3479  cdif 3947  cun 3948  {csn 4625   class class class wbr 5142  cfv 6560  (class class class)co 7432  0cc0 11156  1c1 11157   + caddc 11159  *cxr 11295   < clt 11296  2c2 12322  0cn0 12528  chash 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-xneg 13155  df-xadd 13156  df-fz 13549  df-hash 14371
This theorem is referenced by:  cusgr3cyclex  35142
  Copyright terms: Public domain W3C validator