MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt23el Structured version   Visualization version   GIF version

Theorem hashgt23el 14447
Description: A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023.)
Assertion
Ref Expression
hashgt23el ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝑊(𝑏,𝑐)

Proof of Theorem hashgt23el
StepHypRef Expression
1 2pos 12348 . . . . . 6 0 < 2
2 0xr 11287 . . . . . . 7 0 ∈ ℝ*
3 2re 12319 . . . . . . . 8 2 ∈ ℝ
43rexri 11298 . . . . . . 7 2 ∈ ℝ*
5 hashxrcl 14380 . . . . . . 7 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
6 xrlttr 13161 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
72, 4, 5, 6mp3an12i 1467 . . . . . 6 (𝑉𝑊 → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
81, 7mpani 696 . . . . 5 (𝑉𝑊 → (2 < (♯‘𝑉) → 0 < (♯‘𝑉)))
9 hashgt0elex 14424 . . . . . 6 ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
109ex 412 . . . . 5 (𝑉𝑊 → (0 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
118, 10syld 47 . . . 4 (𝑉𝑊 → (2 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
1211imp 406 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
13 difexg 5304 . . . . 5 (𝑉𝑊 → (𝑉 ∖ {𝑎}) ∈ V)
14 difsnid 4791 . . . . . . . . . . . 12 (𝑎𝑉 → ((𝑉 ∖ {𝑎}) ∪ {𝑎}) = 𝑉)
1514fveq2d 6885 . . . . . . . . . . 11 (𝑎𝑉 → (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) = (♯‘𝑉))
1615breq2d 5136 . . . . . . . . . 10 (𝑎𝑉 → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
1716adantr 480 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
18 df-2 12308 . . . . . . . . . . . . 13 2 = (1 + 1)
1918breq1i 5131 . . . . . . . . . . . 12 (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})))
20 neldifsn 4773 . . . . . . . . . . . . . 14 ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})
21 1nn0 12522 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
22 hashunsnggt 14417 . . . . . . . . . . . . . . . 16 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉 ∧ 1 ∈ ℕ0) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2321, 22mp3anl3 1459 . . . . . . . . . . . . . . 15 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2413, 23sylanl1 680 . . . . . . . . . . . . . 14 (((𝑉𝑊𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2520, 24mpan2 691 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎𝑉) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2625biimp3ar 1472 . . . . . . . . . . . 12 ((𝑉𝑊𝑎𝑉 ∧ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
2719, 26syl3an3b 1407 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉 ∧ 2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
28273expia 1121 . . . . . . . . . 10 ((𝑉𝑊𝑎𝑉) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
2928ancoms 458 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
3017, 29sylbird 260 . . . . . . . 8 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘𝑉) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
31303impia 1117 . . . . . . 7 ((𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
32313expib 1122 . . . . . 6 (𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
33 1lt2 12416 . . . . . . . . . . 11 1 < 2
34 1xr 11299 . . . . . . . . . . . 12 1 ∈ ℝ*
35 xrlttr 13161 . . . . . . . . . . . 12 ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3634, 4, 5, 35mp3an12i 1467 . . . . . . . . . . 11 (𝑉𝑊 → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3733, 36mpani 696 . . . . . . . . . 10 (𝑉𝑊 → (2 < (♯‘𝑉) → 1 < (♯‘𝑉)))
3837imp 406 . . . . . . . . 9 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
39383adant1 1130 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
40 difsn 4779 . . . . . . . . . 10 𝑎𝑉 → (𝑉 ∖ {𝑎}) = 𝑉)
41403ad2ant1 1133 . . . . . . . . 9 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (𝑉 ∖ {𝑎}) = 𝑉)
4241fveq2d 6885 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (♯‘(𝑉 ∖ {𝑎})) = (♯‘𝑉))
4339, 42breqtrrd 5152 . . . . . . 7 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
44433expib 1122 . . . . . 6 𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
4532, 44pm2.61i 182 . . . . 5 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
46 hashgt12el 14445 . . . . 5 (((𝑉 ∖ {𝑎}) ∈ V ∧ 1 < (♯‘(𝑉 ∖ {𝑎}))) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4713, 45, 46syl2an2r 685 . . . 4 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4847alrimiv 1927 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
49 19.29r 1874 . . 3 ((∃𝑎 𝑎𝑉 ∧ ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
5012, 48, 49syl2anc 584 . 2 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
51 df-rex 3062 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
52 eldifsn 4767 . . . . . . . . 9 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
53 necom 2986 . . . . . . . . . 10 (𝑏𝑎𝑎𝑏)
5453anbi2i 623 . . . . . . . . 9 ((𝑏𝑉𝑏𝑎) ↔ (𝑏𝑉𝑎𝑏))
5552, 54bitri 275 . . . . . . . 8 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑎𝑏))
56 ax-5 1910 . . . . . . . . 9 (𝑎𝑏 → ∀𝑐 𝑎𝑏)
5756anim2i 617 . . . . . . . 8 ((𝑏𝑉𝑎𝑏) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
5855, 57sylbi 217 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
59 3anass 1094 . . . . . . . . . 10 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ (𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
6059exbii 1848 . . . . . . . . 9 (∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
61 df-rex 3062 . . . . . . . . . 10 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐))
62 eldifsn 4767 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑐𝑎))
63 necom 2986 . . . . . . . . . . . . . . 15 (𝑐𝑎𝑎𝑐)
6463anbi2i 623 . . . . . . . . . . . . . 14 ((𝑐𝑉𝑐𝑎) ↔ (𝑐𝑉𝑎𝑐))
6562, 64bitri 275 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑎𝑐))
6665anbi1i 624 . . . . . . . . . . . 12 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
67 df-3an 1088 . . . . . . . . . . . 12 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
6866, 67bitr4i 278 . . . . . . . . . . 11 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ (𝑐𝑉𝑎𝑐𝑏𝑐))
6968exbii 1848 . . . . . . . . . 10 (∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
7061, 69bitri 275 . . . . . . . . 9 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
71 df-rex 3062 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
7260, 70, 713bitr4i 303 . . . . . . . 8 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7372biimpi 216 . . . . . . 7 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7458, 73anim12i 613 . . . . . 6 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
75 alral 3066 . . . . . . . . . 10 (∀𝑐 𝑎𝑏 → ∀𝑐𝑉 𝑎𝑏)
7675anim1i 615 . . . . . . . . 9 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
77 r19.29 3102 . . . . . . . . 9 ((∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
78 3anass 1094 . . . . . . . . . . 11 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
7978biimpri 228 . . . . . . . . . 10 ((𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → (𝑎𝑏𝑎𝑐𝑏𝑐))
8079reximi 3075 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8176, 77, 803syl 18 . . . . . . . 8 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8281anim2i 617 . . . . . . 7 ((𝑏𝑉 ∧ (∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8382anassrs 467 . . . . . 6 (((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8474, 83syl 17 . . . . 5 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8584reximi2 3070 . . . 4 (∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8685reximi 3075 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8751, 86sylbir 235 . 2 (∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8850, 87syl 17 1 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  {csn 4606   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  *cxr 11273   < clt 11274  2c2 12300  0cn0 12506  chash 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-xneg 13133  df-xadd 13134  df-fz 13530  df-hash 14354
This theorem is referenced by:  cusgr3cyclex  35163
  Copyright terms: Public domain W3C validator