Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt23el Structured version   Visualization version   GIF version

Theorem hashgt23el 13785
 Description: A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023.)
Assertion
Ref Expression
hashgt23el ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝑊(𝑏,𝑐)

Proof of Theorem hashgt23el
StepHypRef Expression
1 2pos 11732 . . . . . 6 0 < 2
2 0xr 10681 . . . . . . 7 0 ∈ ℝ*
3 2re 11703 . . . . . . . 8 2 ∈ ℝ
43rexri 10692 . . . . . . 7 2 ∈ ℝ*
5 hashxrcl 13718 . . . . . . 7 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
6 xrlttr 12525 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
72, 4, 5, 6mp3an12i 1462 . . . . . 6 (𝑉𝑊 → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
81, 7mpani 695 . . . . 5 (𝑉𝑊 → (2 < (♯‘𝑉) → 0 < (♯‘𝑉)))
9 hashgt0elex 13762 . . . . . 6 ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
109ex 416 . . . . 5 (𝑉𝑊 → (0 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
118, 10syld 47 . . . 4 (𝑉𝑊 → (2 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
1211imp 410 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
13 difexg 5198 . . . . 5 (𝑉𝑊 → (𝑉 ∖ {𝑎}) ∈ V)
14 difsnid 4706 . . . . . . . . . . . 12 (𝑎𝑉 → ((𝑉 ∖ {𝑎}) ∪ {𝑎}) = 𝑉)
1514fveq2d 6653 . . . . . . . . . . 11 (𝑎𝑉 → (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) = (♯‘𝑉))
1615breq2d 5045 . . . . . . . . . 10 (𝑎𝑉 → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
1716adantr 484 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
18 df-2 11692 . . . . . . . . . . . . 13 2 = (1 + 1)
1918breq1i 5040 . . . . . . . . . . . 12 (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})))
20 neldifsn 4688 . . . . . . . . . . . . . 14 ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})
21 1nn0 11905 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
22 hashunsnggt 13755 . . . . . . . . . . . . . . . 16 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉 ∧ 1 ∈ ℕ0) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2321, 22mp3anl3 1454 . . . . . . . . . . . . . . 15 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2413, 23sylanl1 679 . . . . . . . . . . . . . 14 (((𝑉𝑊𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2520, 24mpan2 690 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎𝑉) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2625biimp3ar 1467 . . . . . . . . . . . 12 ((𝑉𝑊𝑎𝑉 ∧ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
2719, 26syl3an3b 1402 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉 ∧ 2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
28273expia 1118 . . . . . . . . . 10 ((𝑉𝑊𝑎𝑉) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
2928ancoms 462 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
3017, 29sylbird 263 . . . . . . . 8 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘𝑉) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
31303impia 1114 . . . . . . 7 ((𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
32313expib 1119 . . . . . 6 (𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
33 1lt2 11800 . . . . . . . . . . 11 1 < 2
34 1xr 10693 . . . . . . . . . . . 12 1 ∈ ℝ*
35 xrlttr 12525 . . . . . . . . . . . 12 ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3634, 4, 5, 35mp3an12i 1462 . . . . . . . . . . 11 (𝑉𝑊 → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3733, 36mpani 695 . . . . . . . . . 10 (𝑉𝑊 → (2 < (♯‘𝑉) → 1 < (♯‘𝑉)))
3837imp 410 . . . . . . . . 9 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
39383adant1 1127 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
40 difsn 4694 . . . . . . . . . 10 𝑎𝑉 → (𝑉 ∖ {𝑎}) = 𝑉)
41403ad2ant1 1130 . . . . . . . . 9 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (𝑉 ∖ {𝑎}) = 𝑉)
4241fveq2d 6653 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (♯‘(𝑉 ∖ {𝑎})) = (♯‘𝑉))
4339, 42breqtrrd 5061 . . . . . . 7 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
44433expib 1119 . . . . . 6 𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
4532, 44pm2.61i 185 . . . . 5 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
46 hashgt12el 13783 . . . . 5 (((𝑉 ∖ {𝑎}) ∈ V ∧ 1 < (♯‘(𝑉 ∖ {𝑎}))) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4713, 45, 46syl2an2r 684 . . . 4 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4847alrimiv 1928 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
49 19.29r 1875 . . 3 ((∃𝑎 𝑎𝑉 ∧ ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
5012, 48, 49syl2anc 587 . 2 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
51 df-rex 3115 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
52 eldifsn 4683 . . . . . . . . 9 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
53 necom 3043 . . . . . . . . . 10 (𝑏𝑎𝑎𝑏)
5453anbi2i 625 . . . . . . . . 9 ((𝑏𝑉𝑏𝑎) ↔ (𝑏𝑉𝑎𝑏))
5552, 54bitri 278 . . . . . . . 8 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑎𝑏))
56 ax-5 1911 . . . . . . . . 9 (𝑎𝑏 → ∀𝑐 𝑎𝑏)
5756anim2i 619 . . . . . . . 8 ((𝑏𝑉𝑎𝑏) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
5855, 57sylbi 220 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
59 3anass 1092 . . . . . . . . . 10 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ (𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
6059exbii 1849 . . . . . . . . 9 (∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
61 df-rex 3115 . . . . . . . . . 10 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐))
62 eldifsn 4683 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑐𝑎))
63 necom 3043 . . . . . . . . . . . . . . 15 (𝑐𝑎𝑎𝑐)
6463anbi2i 625 . . . . . . . . . . . . . 14 ((𝑐𝑉𝑐𝑎) ↔ (𝑐𝑉𝑎𝑐))
6562, 64bitri 278 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑎𝑐))
6665anbi1i 626 . . . . . . . . . . . 12 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
67 df-3an 1086 . . . . . . . . . . . 12 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
6866, 67bitr4i 281 . . . . . . . . . . 11 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ (𝑐𝑉𝑎𝑐𝑏𝑐))
6968exbii 1849 . . . . . . . . . 10 (∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
7061, 69bitri 278 . . . . . . . . 9 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
71 df-rex 3115 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
7260, 70, 713bitr4i 306 . . . . . . . 8 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7372biimpi 219 . . . . . . 7 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7458, 73anim12i 615 . . . . . 6 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
75 alral 3125 . . . . . . . . . 10 (∀𝑐 𝑎𝑏 → ∀𝑐𝑉 𝑎𝑏)
7675anim1i 617 . . . . . . . . 9 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
77 r19.29 3219 . . . . . . . . 9 ((∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
78 3anass 1092 . . . . . . . . . . 11 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
7978biimpri 231 . . . . . . . . . 10 ((𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → (𝑎𝑏𝑎𝑐𝑏𝑐))
8079reximi 3209 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8176, 77, 803syl 18 . . . . . . . 8 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8281anim2i 619 . . . . . . 7 ((𝑏𝑉 ∧ (∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8382anassrs 471 . . . . . 6 (((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8474, 83syl 17 . . . . 5 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8584reximi2 3210 . . . 4 (∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8685reximi 3209 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8751, 86sylbir 238 . 2 (∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8850, 87syl 17 1 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110  Vcvv 3444   ∖ cdif 3881   ∪ cun 3882  {csn 4528   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   + caddc 10533  ℝ*cxr 10667   < clt 10668  2c2 11684  ℕ0cn0 11889  ♯chash 13690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-xneg 12499  df-xadd 12500  df-fz 12890  df-hash 13691 This theorem is referenced by:  cusgr3cyclex  32497
 Copyright terms: Public domain W3C validator