MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashgt23el Structured version   Visualization version   GIF version

Theorem hashgt23el 13633
Description: A set with more than two elements has at least three different elements. (Contributed by BTernaryTau, 21-Sep-2023.)
Assertion
Ref Expression
hashgt23el ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Distinct variable groups:   𝑊,𝑎   𝑉,𝑎,𝑏,𝑐
Allowed substitution hints:   𝑊(𝑏,𝑐)

Proof of Theorem hashgt23el
StepHypRef Expression
1 2pos 11588 . . . . . 6 0 < 2
2 0xr 10534 . . . . . . 7 0 ∈ ℝ*
3 2re 11559 . . . . . . . 8 2 ∈ ℝ
43rexri 10546 . . . . . . 7 2 ∈ ℝ*
5 hashxrcl 13568 . . . . . . 7 (𝑉𝑊 → (♯‘𝑉) ∈ ℝ*)
6 xrlttr 12383 . . . . . . 7 ((0 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
72, 4, 5, 6mp3an12i 1457 . . . . . 6 (𝑉𝑊 → ((0 < 2 ∧ 2 < (♯‘𝑉)) → 0 < (♯‘𝑉)))
81, 7mpani 692 . . . . 5 (𝑉𝑊 → (2 < (♯‘𝑉) → 0 < (♯‘𝑉)))
9 hashgt0elex 13610 . . . . . 6 ((𝑉𝑊 ∧ 0 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
109ex 413 . . . . 5 (𝑉𝑊 → (0 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
118, 10syld 47 . . . 4 (𝑉𝑊 → (2 < (♯‘𝑉) → ∃𝑎 𝑎𝑉))
1211imp 407 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎 𝑎𝑉)
13 difexg 5122 . . . . 5 (𝑉𝑊 → (𝑉 ∖ {𝑎}) ∈ V)
14 difsnid 4650 . . . . . . . . . . . 12 (𝑎𝑉 → ((𝑉 ∖ {𝑎}) ∪ {𝑎}) = 𝑉)
1514fveq2d 6542 . . . . . . . . . . 11 (𝑎𝑉 → (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) = (♯‘𝑉))
1615breq2d 4974 . . . . . . . . . 10 (𝑎𝑉 → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
1716adantr 481 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ 2 < (♯‘𝑉)))
18 df-2 11548 . . . . . . . . . . . . 13 2 = (1 + 1)
1918breq1i 4969 . . . . . . . . . . . 12 (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})))
20 neldifsn 4632 . . . . . . . . . . . . . 14 ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})
21 1nn0 11761 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
22 hashunsnggt 13603 . . . . . . . . . . . . . . . 16 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉 ∧ 1 ∈ ℕ0) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2321, 22mp3anl3 1449 . . . . . . . . . . . . . . 15 ((((𝑉 ∖ {𝑎}) ∈ V ∧ 𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2413, 23sylanl1 676 . . . . . . . . . . . . . 14 (((𝑉𝑊𝑎𝑉) ∧ ¬ 𝑎 ∈ (𝑉 ∖ {𝑎})) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2520, 24mpan2 687 . . . . . . . . . . . . 13 ((𝑉𝑊𝑎𝑉) → (1 < (♯‘(𝑉 ∖ {𝑎})) ↔ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))))
2625biimp3ar 1462 . . . . . . . . . . . 12 ((𝑉𝑊𝑎𝑉 ∧ (1 + 1) < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
2719, 26syl3an3b 1398 . . . . . . . . . . 11 ((𝑉𝑊𝑎𝑉 ∧ 2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎}))) → 1 < (♯‘(𝑉 ∖ {𝑎})))
28273expia 1114 . . . . . . . . . 10 ((𝑉𝑊𝑎𝑉) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
2928ancoms 459 . . . . . . . . 9 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘((𝑉 ∖ {𝑎}) ∪ {𝑎})) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
3017, 29sylbird 261 . . . . . . . 8 ((𝑎𝑉𝑉𝑊) → (2 < (♯‘𝑉) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
31303impia 1110 . . . . . . 7 ((𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
32313expib 1115 . . . . . 6 (𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
33 1lt2 11656 . . . . . . . . . . 11 1 < 2
34 1xr 10547 . . . . . . . . . . . 12 1 ∈ ℝ*
35 xrlttr 12383 . . . . . . . . . . . 12 ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑉) ∈ ℝ*) → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3634, 4, 5, 35mp3an12i 1457 . . . . . . . . . . 11 (𝑉𝑊 → ((1 < 2 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉)))
3733, 36mpani 692 . . . . . . . . . 10 (𝑉𝑊 → (2 < (♯‘𝑉) → 1 < (♯‘𝑉)))
3837imp 407 . . . . . . . . 9 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
39383adant1 1123 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘𝑉))
40 difsn 4638 . . . . . . . . . 10 𝑎𝑉 → (𝑉 ∖ {𝑎}) = 𝑉)
41403ad2ant1 1126 . . . . . . . . 9 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (𝑉 ∖ {𝑎}) = 𝑉)
4241fveq2d 6542 . . . . . . . 8 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → (♯‘(𝑉 ∖ {𝑎})) = (♯‘𝑉))
4339, 42breqtrrd 4990 . . . . . . 7 ((¬ 𝑎𝑉𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
44433expib 1115 . . . . . 6 𝑎𝑉 → ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎}))))
4532, 44pm2.61i 183 . . . . 5 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → 1 < (♯‘(𝑉 ∖ {𝑎})))
46 hashgt12el 13631 . . . . 5 (((𝑉 ∖ {𝑎}) ∈ V ∧ 1 < (♯‘(𝑉 ∖ {𝑎}))) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4713, 45, 46syl2an2r 681 . . . 4 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
4847alrimiv 1905 . . 3 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐)
49 19.29r 1856 . . 3 ((∃𝑎 𝑎𝑉 ∧ ∀𝑎𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
5012, 48, 49syl2anc 584 . 2 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
51 df-rex 3111 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐))
52 eldifsn 4626 . . . . . . . . 9 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
53 necom 3037 . . . . . . . . . 10 (𝑏𝑎𝑎𝑏)
5453anbi2i 622 . . . . . . . . 9 ((𝑏𝑉𝑏𝑎) ↔ (𝑏𝑉𝑎𝑏))
5552, 54bitri 276 . . . . . . . 8 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑎𝑏))
56 ax-5 1888 . . . . . . . . 9 (𝑎𝑏 → ∀𝑐 𝑎𝑏)
5756anim2i 616 . . . . . . . 8 ((𝑏𝑉𝑎𝑏) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
5855, 57sylbi 218 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (𝑏𝑉 ∧ ∀𝑐 𝑎𝑏))
59 3anass 1088 . . . . . . . . . 10 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ (𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
6059exbii 1829 . . . . . . . . 9 (∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
61 df-rex 3111 . . . . . . . . . 10 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐))
62 eldifsn 4626 . . . . . . . . . . . . . 14 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑐𝑎))
63 necom 3037 . . . . . . . . . . . . . . 15 (𝑐𝑎𝑎𝑐)
6463anbi2i 622 . . . . . . . . . . . . . 14 ((𝑐𝑉𝑐𝑎) ↔ (𝑐𝑉𝑎𝑐))
6562, 64bitri 276 . . . . . . . . . . . . 13 (𝑐 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑐𝑉𝑎𝑐))
6665anbi1i 623 . . . . . . . . . . . 12 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
67 df-3an 1082 . . . . . . . . . . . 12 ((𝑐𝑉𝑎𝑐𝑏𝑐) ↔ ((𝑐𝑉𝑎𝑐) ∧ 𝑏𝑐))
6866, 67bitr4i 279 . . . . . . . . . . 11 ((𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ (𝑐𝑉𝑎𝑐𝑏𝑐))
6968exbii 1829 . . . . . . . . . 10 (∃𝑐(𝑐 ∈ (𝑉 ∖ {𝑎}) ∧ 𝑏𝑐) ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
7061, 69bitri 276 . . . . . . . . 9 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐(𝑐𝑉𝑎𝑐𝑏𝑐))
71 df-rex 3111 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑐𝑏𝑐) ↔ ∃𝑐(𝑐𝑉 ∧ (𝑎𝑐𝑏𝑐)))
7260, 70, 713bitr4i 304 . . . . . . . 8 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 ↔ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7372biimpi 217 . . . . . . 7 (∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))
7458, 73anim12i 612 . . . . . 6 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
75 alral 3121 . . . . . . . . . 10 (∀𝑐 𝑎𝑏 → ∀𝑐𝑉 𝑎𝑏)
7675anim1i 614 . . . . . . . . 9 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)))
77 r19.29 3218 . . . . . . . . 9 ((∀𝑐𝑉 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
78 3anass 1088 . . . . . . . . . . 11 ((𝑎𝑏𝑎𝑐𝑏𝑐) ↔ (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)))
7978biimpri 229 . . . . . . . . . 10 ((𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → (𝑎𝑏𝑎𝑐𝑏𝑐))
8079reximi 3207 . . . . . . . . 9 (∃𝑐𝑉 (𝑎𝑏 ∧ (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8176, 77, 803syl 18 . . . . . . . 8 ((∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8281anim2i 616 . . . . . . 7 ((𝑏𝑉 ∧ (∀𝑐 𝑎𝑏 ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐))) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8382anassrs 468 . . . . . 6 (((𝑏𝑉 ∧ ∀𝑐 𝑎𝑏) ∧ ∃𝑐𝑉 (𝑎𝑐𝑏𝑐)) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8474, 83syl 17 . . . . 5 ((𝑏 ∈ (𝑉 ∖ {𝑎}) ∧ ∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → (𝑏𝑉 ∧ ∃𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐)))
8584reximi2 3208 . . . 4 (∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8685reximi 3207 . . 3 (∃𝑎𝑉𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐 → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8751, 86sylbir 236 . 2 (∃𝑎(𝑎𝑉 ∧ ∃𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑐 ∈ (𝑉 ∖ {𝑎})𝑏𝑐) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
8850, 87syl 17 1 ((𝑉𝑊 ∧ 2 < (♯‘𝑉)) → ∃𝑎𝑉𝑏𝑉𝑐𝑉 (𝑎𝑏𝑎𝑐𝑏𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080  wal 1520   = wceq 1522  wex 1761  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  cdif 3856  cun 3857  {csn 4472   class class class wbr 4962  cfv 6225  (class class class)co 7016  0cc0 10383  1c1 10384   + caddc 10386  *cxr 10520   < clt 10521  2c2 11540  0cn0 11745  chash 13540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-xneg 12357  df-xadd 12358  df-fz 12743  df-hash 13541
This theorem is referenced by:  cusgr3cyclex  31991
  Copyright terms: Public domain W3C validator