MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intab Structured version   Visualization version   GIF version

Theorem intab 4982
Description: The intersection of a special case of a class abstraction. 𝑦 may be free in 𝜑 and 𝐴, which can be thought of a 𝜑(𝑦) and 𝐴(𝑦). Typically, abrexex2 7960 or abexssex 7961 can be used to satisfy the second hypothesis. (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
intab.1 𝐴 ∈ V
intab.2 {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)} ∈ V
Assertion
Ref Expression
intab {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} = {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)}
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem intab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 = 𝐴𝑥 = 𝐴))
21anbi2d 628 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝜑𝑧 = 𝐴) ↔ (𝜑𝑥 = 𝐴)))
32exbidv 1923 . . . . . . . 8 (𝑧 = 𝑥 → (∃𝑦(𝜑𝑧 = 𝐴) ↔ ∃𝑦(𝜑𝑥 = 𝐴)))
43cbvabv 2804 . . . . . . 7 {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} = {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)}
5 intab.2 . . . . . . 7 {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)} ∈ V
64, 5eqeltri 2828 . . . . . 6 {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ∈ V
7 nfe1 2146 . . . . . . . . 9 𝑦𝑦(𝜑𝑧 = 𝐴)
87nfab 2908 . . . . . . . 8 𝑦{𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}
98nfeq2 2919 . . . . . . 7 𝑦 𝑥 = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}
10 eleq2 2821 . . . . . . . 8 (𝑥 = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} → (𝐴𝑥𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}))
1110imbi2d 340 . . . . . . 7 (𝑥 = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} → ((𝜑𝐴𝑥) ↔ (𝜑𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})))
129, 11albid 2214 . . . . . 6 (𝑥 = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} → (∀𝑦(𝜑𝐴𝑥) ↔ ∀𝑦(𝜑𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})))
136, 12elab 3668 . . . . 5 ({𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} ↔ ∀𝑦(𝜑𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}))
14 19.8a 2173 . . . . . . . . 9 ((𝜑𝑧 = 𝐴) → ∃𝑦(𝜑𝑧 = 𝐴))
1514ex 412 . . . . . . . 8 (𝜑 → (𝑧 = 𝐴 → ∃𝑦(𝜑𝑧 = 𝐴)))
1615alrimiv 1929 . . . . . . 7 (𝜑 → ∀𝑧(𝑧 = 𝐴 → ∃𝑦(𝜑𝑧 = 𝐴)))
17 intab.1 . . . . . . . 8 𝐴 ∈ V
1817sbc6 3809 . . . . . . 7 ([𝐴 / 𝑧]𝑦(𝜑𝑧 = 𝐴) ↔ ∀𝑧(𝑧 = 𝐴 → ∃𝑦(𝜑𝑧 = 𝐴)))
1916, 18sylibr 233 . . . . . 6 (𝜑[𝐴 / 𝑧]𝑦(𝜑𝑧 = 𝐴))
20 df-sbc 3778 . . . . . 6 ([𝐴 / 𝑧]𝑦(𝜑𝑧 = 𝐴) ↔ 𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})
2119, 20sylib 217 . . . . 5 (𝜑𝐴 ∈ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})
2213, 21mpgbir 1800 . . . 4 {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)}
23 intss1 4967 . . . 4 ({𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ∈ {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} → {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} ⊆ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)})
2422, 23ax-mp 5 . . 3 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} ⊆ {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}
25 19.29r 1876 . . . . . . . 8 ((∃𝑦(𝜑𝑧 = 𝐴) ∧ ∀𝑦(𝜑𝐴𝑥)) → ∃𝑦((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)))
26 simplr 766 . . . . . . . . . 10 (((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)) → 𝑧 = 𝐴)
27 pm3.35 800 . . . . . . . . . . 11 ((𝜑 ∧ (𝜑𝐴𝑥)) → 𝐴𝑥)
2827adantlr 712 . . . . . . . . . 10 (((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)) → 𝐴𝑥)
2926, 28eqeltrd 2832 . . . . . . . . 9 (((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)) → 𝑧𝑥)
3029exlimiv 1932 . . . . . . . 8 (∃𝑦((𝜑𝑧 = 𝐴) ∧ (𝜑𝐴𝑥)) → 𝑧𝑥)
3125, 30syl 17 . . . . . . 7 ((∃𝑦(𝜑𝑧 = 𝐴) ∧ ∀𝑦(𝜑𝐴𝑥)) → 𝑧𝑥)
3231ex 412 . . . . . 6 (∃𝑦(𝜑𝑧 = 𝐴) → (∀𝑦(𝜑𝐴𝑥) → 𝑧𝑥))
3332alrimiv 1929 . . . . 5 (∃𝑦(𝜑𝑧 = 𝐴) → ∀𝑥(∀𝑦(𝜑𝐴𝑥) → 𝑧𝑥))
34 vex 3477 . . . . . 6 𝑧 ∈ V
3534elintab 4962 . . . . 5 (𝑧 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} ↔ ∀𝑥(∀𝑦(𝜑𝐴𝑥) → 𝑧𝑥))
3633, 35sylibr 233 . . . 4 (∃𝑦(𝜑𝑧 = 𝐴) → 𝑧 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)})
3736abssi 4067 . . 3 {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)} ⊆ {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)}
3824, 37eqssi 3998 . 2 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} = {𝑧 ∣ ∃𝑦(𝜑𝑧 = 𝐴)}
3938, 4eqtri 2759 1 {𝑥 ∣ ∀𝑦(𝜑𝐴𝑥)} = {𝑥 ∣ ∃𝑦(𝜑𝑥 = 𝐴)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wex 1780  wcel 2105  {cab 2708  Vcvv 3473  [wsbc 3777  wss 3948   cint 4950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-v 3475  df-sbc 3778  df-in 3955  df-ss 3965  df-int 4951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator