Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmcncfil Structured version   Visualization version   GIF version

Theorem fmcncfil 31284
Description: The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017.)
Hypotheses
Ref Expression
fmcncfil.1 𝐽 = (MetOpen‘𝐷)
fmcncfil.2 𝐾 = (MetOpen‘𝐸)
Assertion
Ref Expression
fmcncfil (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))

Proof of Theorem fmcncfil
Dummy variables 𝑒 𝑏 𝑥 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐸 ∈ (∞Met‘𝑌))
2 simpl1 1188 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (CMet‘𝑋))
3 fmcncfil.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
43cmetcvg 23889 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐵) ≠ ∅)
5 n0 4260 . . . . . 6 ((𝐽 fLim 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
64, 5sylib 221 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
72, 6sylancom 591 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
8 cmetmet 23890 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
9 metxmet 22941 . . . . . . . 8 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
102, 8, 93syl 18 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
11 cfilfil 23871 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋))
1210, 11sylancom 591 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋))
133mopntopon 23046 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1410, 13syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐽 ∈ (TopOn‘𝑋))
15 fmcncfil.2 . . . . . . . . 9 𝐾 = (MetOpen‘𝐸)
1615mopntopon 23046 . . . . . . . 8 (𝐸 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
171, 16syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐾 ∈ (TopOn‘𝑌))
18 simpl3 1190 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (𝐽 Cn 𝐾))
19 cnflf 22607 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))))
2019simplbda 503 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))
2114, 17, 18, 20syl21anc 836 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))
22 oveq2 7143 . . . . . . . 8 (𝑏 = 𝐵 → (𝐽 fLim 𝑏) = (𝐽 fLim 𝐵))
23 oveq2 7143 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐾 fLimf 𝑏) = (𝐾 fLimf 𝐵))
2423fveq1d 6647 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝐾 fLimf 𝑏)‘𝐹) = ((𝐾 fLimf 𝐵)‘𝐹))
2524eleq2d 2875 . . . . . . . 8 (𝑏 = 𝐵 → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2622, 25raleqbidv 3354 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2726rspcv 3566 . . . . . 6 (𝐵 ∈ (Fil‘𝑋) → (∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2812, 21, 27sylc 65 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
29 df-ral 3111 . . . . 5 (∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
3028, 29sylib 221 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
31 19.29r 1875 . . . . 5 ((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))))
32 pm3.35 802 . . . . . 6 ((𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
3332eximi 1836 . . . . 5 (∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
3431, 33syl 17 . . . 4 ((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
357, 30, 34syl2anc 587 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
363, 15metcn 23150 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒))))
3736biimpa 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒)))
3810, 1, 18, 37syl21anc 836 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒)))
3938simpld 498 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹:𝑋𝑌)
40 flfval 22595 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4117, 12, 39, 40syl3anc 1368 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4241eleq2d 2875 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ (𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))))
4342exbidv 1922 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))))
4435, 43mpbid 235 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4515flimcfil 23918 . . . 4 ((𝐸 ∈ (∞Met‘𝑌) ∧ (𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))
4645ex 416 . . 3 (𝐸 ∈ (∞Met‘𝑌) → ((𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)))
4746exlimdv 1934 . 2 (𝐸 ∈ (∞Met‘𝑌) → (∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)))
481, 44, 47sylc 65 1 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  c0 4243   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135   < clt 10664  +crp 12377  ∞Metcxmet 20076  Metcmet 20077  MetOpencmopn 20081  TopOnctopon 21515   Cn ccn 21829  Filcfil 22450   FilMap cfm 22538   fLim cflim 22539   fLimf cflf 22540  CauFilccfil 23856  CMetccmet 23858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-bases 21551  df-ntr 21625  df-nei 21703  df-cn 21832  df-cnp 21833  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-cfil 23859  df-cmet 23861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator