Step | Hyp | Ref
| Expression |
1 | | simpl2 1190 |
. 2
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐸 ∈ (∞Met‘𝑌)) |
2 | | simpl1 1189 |
. . . . 5
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (CMet‘𝑋)) |
3 | | fmcncfil.1 |
. . . . . . 7
⊢ 𝐽 = (MetOpen‘𝐷) |
4 | 3 | cmetcvg 24354 |
. . . . . 6
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐵) ≠ ∅) |
5 | | n0 4277 |
. . . . . 6
⊢ ((𝐽 fLim 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵)) |
6 | 4, 5 | sylib 217 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵)) |
7 | 2, 6 | sylancom 587 |
. . . 4
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵)) |
8 | | cmetmet 24355 |
. . . . . . . 8
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
9 | | metxmet 23395 |
. . . . . . . 8
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
10 | 2, 8, 9 | 3syl 18 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
11 | | cfilfil 24336 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋)) |
12 | 10, 11 | sylancom 587 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋)) |
13 | 3 | mopntopon 23500 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | 10, 13 | syl 17 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐽 ∈ (TopOn‘𝑋)) |
15 | | fmcncfil.2 |
. . . . . . . . 9
⊢ 𝐾 = (MetOpen‘𝐸) |
16 | 15 | mopntopon 23500 |
. . . . . . . 8
⊢ (𝐸 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
17 | 1, 16 | syl 17 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐾 ∈ (TopOn‘𝑌)) |
18 | | simpl3 1191 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
19 | | cnflf 23061 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹)))) |
20 | 19 | simplbda 499 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹)) |
21 | 14, 17, 18, 20 | syl21anc 834 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹)) |
22 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝐽 fLim 𝑏) = (𝐽 fLim 𝐵)) |
23 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (𝐾 fLimf 𝑏) = (𝐾 fLimf 𝐵)) |
24 | 23 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → ((𝐾 fLimf 𝑏)‘𝐹) = ((𝐾 fLimf 𝐵)‘𝐹)) |
25 | 24 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
26 | 22, 25 | raleqbidv 3327 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
27 | 26 | rspcv 3547 |
. . . . . 6
⊢ (𝐵 ∈ (Fil‘𝑋) → (∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
28 | 12, 21, 27 | sylc 65 |
. . . . 5
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
29 | | df-ral 3068 |
. . . . 5
⊢
(∀𝑥 ∈
(𝐽 fLim 𝐵)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
30 | 28, 29 | sylib 217 |
. . . 4
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
31 | | 19.29r 1878 |
. . . . 5
⊢
((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))) |
32 | | pm3.35 799 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
33 | 32 | eximi 1838 |
. . . . 5
⊢
(∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
34 | 31, 33 | syl 17 |
. . . 4
⊢
((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
35 | 7, 30, 34 | syl2anc 583 |
. . 3
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
36 | 3, 15 | metcn 23605 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹‘𝑥)𝐸(𝐹‘𝑦)) < 𝑒)))) |
37 | 36 | biimpa 476 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹‘𝑥)𝐸(𝐹‘𝑦)) < 𝑒))) |
38 | 10, 1, 18, 37 | syl21anc 834 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹‘𝑥)𝐸(𝐹‘𝑦)) < 𝑒))) |
39 | 38 | simpld 494 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹:𝑋⟶𝑌) |
40 | | flfval 23049 |
. . . . . 6
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) |
41 | 17, 12, 39, 40 | syl3anc 1369 |
. . . . 5
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) |
42 | 41 | eleq2d 2824 |
. . . 4
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ (𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))) |
43 | 42 | exbidv 1925 |
. . 3
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (∃𝑥(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∃𝑥(𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))) |
44 | 35, 43 | mpbid 231 |
. 2
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) |
45 | 15 | flimcfil 24383 |
. . . 4
⊢ ((𝐸 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)) |
46 | 45 | ex 412 |
. . 3
⊢ (𝐸 ∈ (∞Met‘𝑌) → ((𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))) |
47 | 46 | exlimdv 1937 |
. 2
⊢ (𝐸 ∈ (∞Met‘𝑌) → (∃𝑥(𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))) |
48 | 1, 44, 47 | sylc 65 |
1
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)) |