Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmcncfil Structured version   Visualization version   GIF version

Theorem fmcncfil 31192
 Description: The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017.)
Hypotheses
Ref Expression
fmcncfil.1 𝐽 = (MetOpen‘𝐷)
fmcncfil.2 𝐾 = (MetOpen‘𝐸)
Assertion
Ref Expression
fmcncfil (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))

Proof of Theorem fmcncfil
Dummy variables 𝑒 𝑏 𝑥 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐸 ∈ (∞Met‘𝑌))
2 simpl1 1188 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (CMet‘𝑋))
3 fmcncfil.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
43cmetcvg 23878 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐵) ≠ ∅)
5 n0 4291 . . . . . 6 ((𝐽 fLim 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
64, 5sylib 221 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
72, 6sylancom 591 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
8 cmetmet 23879 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
9 metxmet 22930 . . . . . . . 8 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
102, 8, 93syl 18 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
11 cfilfil 23860 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋))
1210, 11sylancom 591 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋))
133mopntopon 23035 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1410, 13syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐽 ∈ (TopOn‘𝑋))
15 fmcncfil.2 . . . . . . . . 9 𝐾 = (MetOpen‘𝐸)
1615mopntopon 23035 . . . . . . . 8 (𝐸 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
171, 16syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐾 ∈ (TopOn‘𝑌))
18 simpl3 1190 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (𝐽 Cn 𝐾))
19 cnflf 22596 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))))
2019simplbda 503 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))
2114, 17, 18, 20syl21anc 836 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))
22 oveq2 7146 . . . . . . . 8 (𝑏 = 𝐵 → (𝐽 fLim 𝑏) = (𝐽 fLim 𝐵))
23 oveq2 7146 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐾 fLimf 𝑏) = (𝐾 fLimf 𝐵))
2423fveq1d 6653 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝐾 fLimf 𝑏)‘𝐹) = ((𝐾 fLimf 𝐵)‘𝐹))
2524eleq2d 2901 . . . . . . . 8 (𝑏 = 𝐵 → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2622, 25raleqbidv 3392 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2726rspcv 3603 . . . . . 6 (𝐵 ∈ (Fil‘𝑋) → (∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2812, 21, 27sylc 65 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
29 df-ral 3137 . . . . 5 (∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
3028, 29sylib 221 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
31 19.29r 1876 . . . . 5 ((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))))
32 pm3.35 802 . . . . . 6 ((𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
3332eximi 1836 . . . . 5 (∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
3431, 33syl 17 . . . 4 ((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
357, 30, 34syl2anc 587 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
363, 15metcn 23139 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒))))
3736biimpa 480 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒)))
3810, 1, 18, 37syl21anc 836 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒)))
3938simpld 498 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹:𝑋𝑌)
40 flfval 22584 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4117, 12, 39, 40syl3anc 1368 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4241eleq2d 2901 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ (𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))))
4342exbidv 1923 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))))
4435, 43mpbid 235 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4515flimcfil 23907 . . . 4 ((𝐸 ∈ (∞Met‘𝑌) ∧ (𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))
4645ex 416 . . 3 (𝐸 ∈ (∞Met‘𝑌) → ((𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)))
4746exlimdv 1935 . 2 (𝐸 ∈ (∞Met‘𝑌) → (∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)))
481, 44, 47sylc 65 1 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2115   ≠ wne 3013  ∀wral 3132  ∃wrex 3133  ∅c0 4274   class class class wbr 5047  ⟶wf 6332  ‘cfv 6336  (class class class)co 7138   < clt 10660  ℝ+crp 12375  ∞Metcxmet 20516  Metcmet 20517  MetOpencmopn 20521  TopOnctopon 21504   Cn ccn 21818  Filcfil 22439   FilMap cfm 22527   fLim cflim 22528   fLimf cflf 22529  CauFilccfil 23845  CMetccmet 23847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-n0 11884  df-z 11968  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-ico 12730  df-topgen 16706  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-fbas 20528  df-fg 20529  df-top 21488  df-topon 21505  df-bases 21540  df-ntr 21614  df-nei 21692  df-cn 21821  df-cnp 21822  df-fil 22440  df-fm 22532  df-flim 22533  df-flf 22534  df-cfil 23848  df-cmet 23850 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator