| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1193 |
. 2
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐸 ∈ (∞Met‘𝑌)) |
| 2 | | simpl1 1192 |
. . . . 5
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (CMet‘𝑋)) |
| 3 | | fmcncfil.1 |
. . . . . . 7
⊢ 𝐽 = (MetOpen‘𝐷) |
| 4 | 3 | cmetcvg 25319 |
. . . . . 6
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐵) ≠ ∅) |
| 5 | | n0 4353 |
. . . . . 6
⊢ ((𝐽 fLim 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵)) |
| 6 | 4, 5 | sylib 218 |
. . . . 5
⊢ ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵)) |
| 7 | 2, 6 | sylancom 588 |
. . . 4
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵)) |
| 8 | | cmetmet 25320 |
. . . . . . . 8
⊢ (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋)) |
| 9 | | metxmet 24344 |
. . . . . . . 8
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) |
| 10 | 2, 8, 9 | 3syl 18 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 11 | | cfilfil 25301 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋)) |
| 12 | 10, 11 | sylancom 588 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋)) |
| 13 | 3 | mopntopon 24449 |
. . . . . . . 8
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | 10, 13 | syl 17 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | | fmcncfil.2 |
. . . . . . . . 9
⊢ 𝐾 = (MetOpen‘𝐸) |
| 16 | 15 | mopntopon 24449 |
. . . . . . . 8
⊢ (𝐸 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
| 17 | 1, 16 | syl 17 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐾 ∈ (TopOn‘𝑌)) |
| 18 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 19 | | cnflf 24010 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹)))) |
| 20 | 19 | simplbda 499 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹)) |
| 21 | 14, 17, 18, 20 | syl21anc 838 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹)) |
| 22 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (𝐽 fLim 𝑏) = (𝐽 fLim 𝐵)) |
| 23 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → (𝐾 fLimf 𝑏) = (𝐾 fLimf 𝐵)) |
| 24 | 23 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → ((𝐾 fLimf 𝑏)‘𝐹) = ((𝐾 fLimf 𝐵)‘𝐹)) |
| 25 | 24 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → ((𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
| 26 | 22, 25 | raleqbidv 3346 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
| 27 | 26 | rspcv 3618 |
. . . . . 6
⊢ (𝐵 ∈ (Fil‘𝑋) → (∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
| 28 | 12, 21, 27 | sylc 65 |
. . . . 5
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
| 29 | | df-ral 3062 |
. . . . 5
⊢
(∀𝑥 ∈
(𝐽 fLim 𝐵)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
| 30 | 28, 29 | sylib 218 |
. . . 4
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) |
| 31 | | 19.29r 1874 |
. . . . 5
⊢
((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))) |
| 32 | | pm3.35 803 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
| 33 | 32 | eximi 1835 |
. . . . 5
⊢
(∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
| 34 | 31, 33 | syl 17 |
. . . 4
⊢
((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
| 35 | 7, 30, 34 | syl2anc 584 |
. . 3
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)) |
| 36 | 3, 15 | metcn 24556 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹‘𝑥)𝐸(𝐹‘𝑦)) < 𝑒)))) |
| 37 | 36 | biimpa 476 |
. . . . . . . 8
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹‘𝑥)𝐸(𝐹‘𝑦)) < 𝑒))) |
| 38 | 10, 1, 18, 37 | syl21anc 838 |
. . . . . . 7
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹‘𝑥)𝐸(𝐹‘𝑦)) < 𝑒))) |
| 39 | 38 | simpld 494 |
. . . . . 6
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹:𝑋⟶𝑌) |
| 40 | | flfval 23998 |
. . . . . 6
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) |
| 41 | 17, 12, 39, 40 | syl3anc 1373 |
. . . . 5
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) |
| 42 | 41 | eleq2d 2827 |
. . . 4
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ (𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))) |
| 43 | 42 | exbidv 1921 |
. . 3
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (∃𝑥(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∃𝑥(𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))) |
| 44 | 35, 43 | mpbid 232 |
. 2
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) |
| 45 | 15 | flimcfil 25348 |
. . . 4
⊢ ((𝐸 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)) |
| 46 | 45 | ex 412 |
. . 3
⊢ (𝐸 ∈ (∞Met‘𝑌) → ((𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))) |
| 47 | 46 | exlimdv 1933 |
. 2
⊢ (𝐸 ∈ (∞Met‘𝑌) → (∃𝑥(𝐹‘𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))) |
| 48 | 1, 44, 47 | sylc 65 |
1
⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)) |