Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmcncfil Structured version   Visualization version   GIF version

Theorem fmcncfil 31783
Description: The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017.)
Hypotheses
Ref Expression
fmcncfil.1 𝐽 = (MetOpen‘𝐷)
fmcncfil.2 𝐾 = (MetOpen‘𝐸)
Assertion
Ref Expression
fmcncfil (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))

Proof of Theorem fmcncfil
Dummy variables 𝑒 𝑏 𝑥 𝑦 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1190 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐸 ∈ (∞Met‘𝑌))
2 simpl1 1189 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (CMet‘𝑋))
3 fmcncfil.1 . . . . . . 7 𝐽 = (MetOpen‘𝐷)
43cmetcvg 24354 . . . . . 6 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐽 fLim 𝐵) ≠ ∅)
5 n0 4277 . . . . . 6 ((𝐽 fLim 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
64, 5sylib 217 . . . . 5 ((𝐷 ∈ (CMet‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
72, 6sylancom 587 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵))
8 cmetmet 24355 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
9 metxmet 23395 . . . . . . . 8 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
102, 8, 93syl 18 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐷 ∈ (∞Met‘𝑋))
11 cfilfil 24336 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋))
1210, 11sylancom 587 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐵 ∈ (Fil‘𝑋))
133mopntopon 23500 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
1410, 13syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐽 ∈ (TopOn‘𝑋))
15 fmcncfil.2 . . . . . . . . 9 𝐾 = (MetOpen‘𝐸)
1615mopntopon 23500 . . . . . . . 8 (𝐸 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
171, 16syl 17 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐾 ∈ (TopOn‘𝑌))
18 simpl3 1191 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (𝐽 Cn 𝐾))
19 cnflf 23061 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))))
2019simplbda 499 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))
2114, 17, 18, 20syl21anc 834 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹))
22 oveq2 7263 . . . . . . . 8 (𝑏 = 𝐵 → (𝐽 fLim 𝑏) = (𝐽 fLim 𝐵))
23 oveq2 7263 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝐾 fLimf 𝑏) = (𝐾 fLimf 𝐵))
2423fveq1d 6758 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝐾 fLimf 𝑏)‘𝐹) = ((𝐾 fLimf 𝐵)‘𝐹))
2524eleq2d 2824 . . . . . . . 8 (𝑏 = 𝐵 → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2622, 25raleqbidv 3327 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2726rspcv 3547 . . . . . 6 (𝐵 ∈ (Fil‘𝑋) → (∀𝑏 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑏)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑏)‘𝐹) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
2812, 21, 27sylc 65 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
29 df-ral 3068 . . . . 5 (∀𝑥 ∈ (𝐽 fLim 𝐵)(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
3028, 29sylib 217 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹)))
31 19.29r 1878 . . . . 5 ((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))))
32 pm3.35 799 . . . . . 6 ((𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
3332eximi 1838 . . . . 5 (∃𝑥(𝑥 ∈ (𝐽 fLim 𝐵) ∧ (𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
3431, 33syl 17 . . . 4 ((∃𝑥 𝑥 ∈ (𝐽 fLim 𝐵) ∧ ∀𝑥(𝑥 ∈ (𝐽 fLim 𝐵) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
357, 30, 34syl2anc 583 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹))
363, 15metcn 23605 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒))))
3736biimpa 476 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒)))
3810, 1, 18, 37syl21anc 834 . . . . . . 7 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑋 ((𝑥𝐷𝑦) < 𝑑 → ((𝐹𝑥)𝐸(𝐹𝑦)) < 𝑒)))
3938simpld 494 . . . . . 6 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → 𝐹:𝑋𝑌)
40 flfval 23049 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ (Fil‘𝑋) ∧ 𝐹:𝑋𝑌) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4117, 12, 39, 40syl3anc 1369 . . . . 5 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐾 fLimf 𝐵)‘𝐹) = (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4241eleq2d 2824 . . . 4 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ (𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))))
4342exbidv 1925 . . 3 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → (∃𝑥(𝐹𝑥) ∈ ((𝐾 fLimf 𝐵)‘𝐹) ↔ ∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))))
4435, 43mpbid 231 . 2 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)))
4515flimcfil 24383 . . . 4 ((𝐸 ∈ (∞Met‘𝑌) ∧ (𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵))) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))
4645ex 412 . . 3 (𝐸 ∈ (∞Met‘𝑌) → ((𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)))
4746exlimdv 1937 . 2 (𝐸 ∈ (∞Met‘𝑌) → (∃𝑥(𝐹𝑥) ∈ (𝐾 fLim ((𝑌 FilMap 𝐹)‘𝐵)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)))
481, 44, 47sylc 65 1 (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253   class class class wbr 5070  wf 6414  cfv 6418  (class class class)co 7255   < clt 10940  +crp 12659  ∞Metcxmet 20495  Metcmet 20496  MetOpencmopn 20500  TopOnctopon 21967   Cn ccn 22283  Filcfil 22904   FilMap cfm 22992   fLim cflim 22993   fLimf cflf 22994  CauFilccfil 24321  CMetccmet 24323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-cnp 22287  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-cfil 24324  df-cmet 24326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator