Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0xp Structured version   Visualization version   GIF version

Theorem fmla0xp 33245
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi vj ("Godel-set of membership") coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmla0xp (Fmla‘∅) = ({∅} × (ω × ω))

Proof of Theorem fmla0xp
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 33244 . 2 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
2 rabab 3450 . 2 {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3 abeq1 2872 . . 3 ({𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω)) ↔ ∀𝑥(∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω))))
4 goel 33209 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
54eqeq2d 2749 . . . . 5 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
652rexbiia 3226 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
7 0ex 5226 . . . . . . . . . 10 ∅ ∈ V
87snid 4594 . . . . . . . . 9 ∅ ∈ {∅}
98a1i 11 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ {∅})
10 opelxpi 5617 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨𝑖, 𝑗⟩ ∈ (ω × ω))
119, 10opelxpd 5618 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω)))
12 eleq1 2826 . . . . . . 7 (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑥 ∈ ({∅} × (ω × ω)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω))))
1311, 12syl5ibrcom 246 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω))))
1413rexlimivv 3220 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω)))
15 elxpi 5602 . . . . . 6 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))))
16 elsni 4575 . . . . . . . . . . . 12 (𝑦 ∈ {∅} → 𝑦 = ∅)
1716opeq1d 4807 . . . . . . . . . . 11 (𝑦 ∈ {∅} → ⟨𝑦, 𝑧⟩ = ⟨∅, 𝑧⟩)
1817eqeq2d 2749 . . . . . . . . . 10 (𝑦 ∈ {∅} → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
1918adantr 480 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
20 elxpi 5602 . . . . . . . . . . 11 (𝑧 ∈ (ω × ω) → ∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)))
21 simprr 769 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → (𝑖 ∈ ω ∧ 𝑗 ∈ ω))
22 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, 𝑧⟩)
23 opeq2 4802 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑖, 𝑗⟩ → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2423adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2524adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2622, 25eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2721, 26jca 511 . . . . . . . . . . . . . 14 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
2827ex 412 . . . . . . . . . . . . 13 (𝑥 = ⟨∅, 𝑧⟩ → ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
29282eximdv 1923 . . . . . . . . . . . 12 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
30 r2ex 3231 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3129, 30syl6ibr 251 . . . . . . . . . . 11 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3220, 31syl5com 31 . . . . . . . . . 10 (𝑧 ∈ (ω × ω) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3332adantl 481 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3419, 33sylbid 239 . . . . . . . 8 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3534impcom 407 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3635exlimivv 1936 . . . . . 6 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3715, 36syl 17 . . . . 5 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3814, 37impbii 208 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ 𝑥 ∈ ({∅} × (ω × ω)))
396, 38bitri 274 . . 3 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω)))
403, 39mpgbir 1803 . 2 {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω))
411, 2, 403eqtri 2770 1 (Fmla‘∅) = ({∅} × (ω × ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wrex 3064  {crab 3067  Vcvv 3422  c0 4253  {csn 4558  cop 4564   × cxp 5578  cfv 6418  (class class class)co 7255  ωcom 7687  𝑔cgoe 33195  Fmlacfmla 33199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-map 8575  df-goel 33202  df-sat 33205  df-fmla 33207
This theorem is referenced by:  fmla1  33249  satefvfmla0  33280  prv1n  33293
  Copyright terms: Public domain W3C validator