Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0xp Structured version   Visualization version   GIF version

Theorem fmla0xp 33977
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi vj ("Godel-set of membership") coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmla0xp (Fmla‘∅) = ({∅} × (ω × ω))

Proof of Theorem fmla0xp
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 33976 . 2 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
2 rabab 3473 . 2 {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3 eqabc 2879 . . 3 ({𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω)) ↔ ∀𝑥(∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω))))
4 goel 33941 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
54eqeq2d 2747 . . . . 5 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
652rexbiia 3209 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
7 0ex 5264 . . . . . . . . . 10 ∅ ∈ V
87snid 4622 . . . . . . . . 9 ∅ ∈ {∅}
98a1i 11 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ {∅})
10 opelxpi 5670 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨𝑖, 𝑗⟩ ∈ (ω × ω))
119, 10opelxpd 5671 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω)))
12 eleq1 2825 . . . . . . 7 (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑥 ∈ ({∅} × (ω × ω)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω))))
1311, 12syl5ibrcom 246 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω))))
1413rexlimivv 3196 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω)))
15 elxpi 5655 . . . . . 6 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))))
16 elsni 4603 . . . . . . . . . . . 12 (𝑦 ∈ {∅} → 𝑦 = ∅)
1716opeq1d 4836 . . . . . . . . . . 11 (𝑦 ∈ {∅} → ⟨𝑦, 𝑧⟩ = ⟨∅, 𝑧⟩)
1817eqeq2d 2747 . . . . . . . . . 10 (𝑦 ∈ {∅} → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
1918adantr 481 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
20 elxpi 5655 . . . . . . . . . . 11 (𝑧 ∈ (ω × ω) → ∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)))
21 simprr 771 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → (𝑖 ∈ ω ∧ 𝑗 ∈ ω))
22 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, 𝑧⟩)
23 opeq2 4831 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑖, 𝑗⟩ → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2423adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2524adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2622, 25eqtrd 2776 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2721, 26jca 512 . . . . . . . . . . . . . 14 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
2827ex 413 . . . . . . . . . . . . 13 (𝑥 = ⟨∅, 𝑧⟩ → ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
29282eximdv 1922 . . . . . . . . . . . 12 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
30 r2ex 3192 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3129, 30syl6ibr 251 . . . . . . . . . . 11 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3220, 31syl5com 31 . . . . . . . . . 10 (𝑧 ∈ (ω × ω) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3332adantl 482 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3419, 33sylbid 239 . . . . . . . 8 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3534impcom 408 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3635exlimivv 1935 . . . . . 6 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3715, 36syl 17 . . . . 5 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3814, 37impbii 208 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ 𝑥 ∈ ({∅} × (ω × ω)))
396, 38bitri 274 . . 3 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω)))
403, 39mpgbir 1801 . 2 {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω))
411, 2, 403eqtri 2768 1 (Fmla‘∅) = ({∅} × (ω × ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wrex 3073  {crab 3407  Vcvv 3445  c0 4282  {csn 4586  cop 4592   × cxp 5631  cfv 6496  (class class class)co 7357  ωcom 7802  𝑔cgoe 33927  Fmlacfmla 33931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-map 8767  df-goel 33934  df-sat 33937  df-fmla 33939
This theorem is referenced by:  fmla1  33981  satefvfmla0  34012  prv1n  34025
  Copyright terms: Public domain W3C validator