Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0xp Structured version   Visualization version   GIF version

Theorem fmla0xp 32245
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi vj ("Godel-set of membership") coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmla0xp (Fmla‘∅) = ({∅} × (ω × ω))

Proof of Theorem fmla0xp
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 32244 . 2 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
2 rabab 3466 . 2 {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3 abeq1 2915 . . 3 ({𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω)) ↔ ∀𝑥(∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω))))
4 goel 32209 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
54eqeq2d 2805 . . . . 5 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
652rexbiia 3261 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
7 0ex 5107 . . . . . . . . . 10 ∅ ∈ V
87snid 4510 . . . . . . . . 9 ∅ ∈ {∅}
98a1i 11 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ {∅})
10 opelxpi 5485 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨𝑖, 𝑗⟩ ∈ (ω × ω))
119, 10opelxpd 5486 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω)))
12 eleq1 2870 . . . . . . 7 (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑥 ∈ ({∅} × (ω × ω)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω))))
1311, 12syl5ibrcom 248 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω))))
1413rexlimivv 3255 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω)))
15 elxpi 5470 . . . . . 6 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))))
16 elsni 4493 . . . . . . . . . . . 12 (𝑦 ∈ {∅} → 𝑦 = ∅)
1716opeq1d 4720 . . . . . . . . . . 11 (𝑦 ∈ {∅} → ⟨𝑦, 𝑧⟩ = ⟨∅, 𝑧⟩)
1817eqeq2d 2805 . . . . . . . . . 10 (𝑦 ∈ {∅} → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
1918adantr 481 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
20 elxpi 5470 . . . . . . . . . . 11 (𝑧 ∈ (ω × ω) → ∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)))
21 simprr 769 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → (𝑖 ∈ ω ∧ 𝑗 ∈ ω))
22 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, 𝑧⟩)
23 opeq2 4715 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑖, 𝑗⟩ → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2423adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2524adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2622, 25eqtrd 2831 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2721, 26jca 512 . . . . . . . . . . . . . 14 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
2827ex 413 . . . . . . . . . . . . 13 (𝑥 = ⟨∅, 𝑧⟩ → ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
29282eximdv 1897 . . . . . . . . . . . 12 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
30 r2ex 3266 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3129, 30syl6ibr 253 . . . . . . . . . . 11 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3220, 31syl5com 31 . . . . . . . . . 10 (𝑧 ∈ (ω × ω) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3332adantl 482 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3419, 33sylbid 241 . . . . . . . 8 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3534impcom 408 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3635exlimivv 1910 . . . . . 6 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3715, 36syl 17 . . . . 5 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3814, 37impbii 210 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ 𝑥 ∈ ({∅} × (ω × ω)))
396, 38bitri 276 . . 3 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω)))
403, 39mpgbir 1781 . 2 {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω))
411, 2, 403eqtri 2823 1 (Fmla‘∅) = ({∅} × (ω × ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wex 1761  wcel 2081  {cab 2775  wrex 3106  {crab 3109  Vcvv 3437  c0 4215  {csn 4476  cop 4482   × cxp 5446  cfv 6230  (class class class)co 7021  ωcom 7441  𝑔cgoe 32195  Fmlacfmla 32199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-inf2 8955
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-map 8263  df-goel 32202  df-sat 32205  df-fmla 32207
This theorem is referenced by:  fmla1  32249  satefvfmla0  32280  prv1n  32293
  Copyright terms: Public domain W3C validator