Step | Hyp | Ref
| Expression |
1 | | fmla0 34361 |
. 2
β’
(Fmlaββ
) = {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
2 | | rabab 3502 |
. 2
β’ {π₯ β V β£ βπ β Ο βπ β Ο π₯ = (πβππ)} = {π₯ β£ βπ β Ο βπ β Ο π₯ = (πβππ)} |
3 | | eqabcb 2875 |
. . 3
β’ ({π₯ β£ βπ β Ο βπ β Ο π₯ = (πβππ)} = ({β
} Γ (Ο Γ
Ο)) β βπ₯(βπ β Ο βπ β Ο π₯ = (πβππ) β π₯ β ({β
} Γ (Ο Γ
Ο)))) |
4 | | goel 34326 |
. . . . . 6
β’ ((π β Ο β§ π β Ο) β (πβππ) = β¨β
, β¨π, πβ©β©) |
5 | 4 | eqeq2d 2743 |
. . . . 5
β’ ((π β Ο β§ π β Ο) β (π₯ = (πβππ) β π₯ = β¨β
, β¨π, πβ©β©)) |
6 | 5 | 2rexbiia 3215 |
. . . 4
β’
(βπ β
Ο βπ β
Ο π₯ = (πβππ) β βπ β Ο βπ β Ο π₯ = β¨β
, β¨π, πβ©β©) |
7 | | 0ex 5306 |
. . . . . . . . . 10
β’ β
β V |
8 | 7 | snid 4663 |
. . . . . . . . 9
β’ β
β {β
} |
9 | 8 | a1i 11 |
. . . . . . . 8
β’ ((π β Ο β§ π β Ο) β β
β {β
}) |
10 | | opelxpi 5712 |
. . . . . . . 8
β’ ((π β Ο β§ π β Ο) β
β¨π, πβ© β (Ο Γ
Ο)) |
11 | 9, 10 | opelxpd 5713 |
. . . . . . 7
β’ ((π β Ο β§ π β Ο) β
β¨β
, β¨π,
πβ©β© β
({β
} Γ (Ο Γ Ο))) |
12 | | eleq1 2821 |
. . . . . . 7
β’ (π₯ = β¨β
, β¨π, πβ©β© β (π₯ β ({β
} Γ (Ο Γ
Ο)) β β¨β
, β¨π, πβ©β© β ({β
} Γ
(Ο Γ Ο)))) |
13 | 11, 12 | syl5ibrcom 246 |
. . . . . 6
β’ ((π β Ο β§ π β Ο) β (π₯ = β¨β
, β¨π, πβ©β© β π₯ β ({β
} Γ (Ο Γ
Ο)))) |
14 | 13 | rexlimivv 3199 |
. . . . 5
β’
(βπ β
Ο βπ β
Ο π₯ = β¨β
,
β¨π, πβ©β© β π₯ β ({β
} Γ (Ο Γ
Ο))) |
15 | | elxpi 5697 |
. . . . . 6
β’ (π₯ β ({β
} Γ
(Ο Γ Ο)) β βπ¦βπ§(π₯ = β¨π¦, π§β© β§ (π¦ β {β
} β§ π§ β (Ο Γ
Ο)))) |
16 | | elsni 4644 |
. . . . . . . . . . . 12
β’ (π¦ β {β
} β π¦ = β
) |
17 | 16 | opeq1d 4878 |
. . . . . . . . . . 11
β’ (π¦ β {β
} β
β¨π¦, π§β© = β¨β
, π§β©) |
18 | 17 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π¦ β {β
} β (π₯ = β¨π¦, π§β© β π₯ = β¨β
, π§β©)) |
19 | 18 | adantr 481 |
. . . . . . . . 9
β’ ((π¦ β {β
} β§ π§ β (Ο Γ
Ο)) β (π₯ =
β¨π¦, π§β© β π₯ = β¨β
, π§β©)) |
20 | | elxpi 5697 |
. . . . . . . . . . 11
β’ (π§ β (Ο Γ
Ο) β βπβπ(π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο))) |
21 | | simprr 771 |
. . . . . . . . . . . . . . 15
β’ ((π₯ = β¨β
, π§β© β§ (π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο))) β (π β Ο β§ π β Ο)) |
22 | | simpl 483 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ = β¨β
, π§β© β§ (π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο))) β π₯ = β¨β
, π§β©) |
23 | | opeq2 4873 |
. . . . . . . . . . . . . . . . . 18
β’ (π§ = β¨π, πβ© β β¨β
, π§β© = β¨β
,
β¨π, πβ©β©) |
24 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . 17
β’ ((π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο)) β β¨β
, π§β© = β¨β
,
β¨π, πβ©β©) |
25 | 24 | adantl 482 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ = β¨β
, π§β© β§ (π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο))) β β¨β
,
π§β© = β¨β
,
β¨π, πβ©β©) |
26 | 22, 25 | eqtrd 2772 |
. . . . . . . . . . . . . . 15
β’ ((π₯ = β¨β
, π§β© β§ (π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο))) β π₯ = β¨β
, β¨π, πβ©β©) |
27 | 21, 26 | jca 512 |
. . . . . . . . . . . . . 14
β’ ((π₯ = β¨β
, π§β© β§ (π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο))) β ((π β Ο β§ π β Ο) β§ π₯ = β¨β
, β¨π, πβ©β©)) |
28 | 27 | ex 413 |
. . . . . . . . . . . . 13
β’ (π₯ = β¨β
, π§β© β ((π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο)) β ((π β Ο β§ π β Ο) β§ π₯ = β¨β
, β¨π, πβ©β©))) |
29 | 28 | 2eximdv 1922 |
. . . . . . . . . . . 12
β’ (π₯ = β¨β
, π§β© β (βπβπ(π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο)) β βπβπ((π β Ο β§ π β Ο) β§ π₯ = β¨β
, β¨π, πβ©β©))) |
30 | | r2ex 3195 |
. . . . . . . . . . . 12
β’
(βπ β
Ο βπ β
Ο π₯ = β¨β
,
β¨π, πβ©β© β βπβπ((π β Ο β§ π β Ο) β§ π₯ = β¨β
, β¨π, πβ©β©)) |
31 | 29, 30 | syl6ibr 251 |
. . . . . . . . . . 11
β’ (π₯ = β¨β
, π§β© β (βπβπ(π§ = β¨π, πβ© β§ (π β Ο β§ π β Ο)) β βπ β Ο βπ β Ο π₯ = β¨β
, β¨π, πβ©β©)) |
32 | 20, 31 | syl5com 31 |
. . . . . . . . . 10
β’ (π§ β (Ο Γ
Ο) β (π₯ =
β¨β
, π§β©
β βπ β
Ο βπ β
Ο π₯ = β¨β
,
β¨π, πβ©β©)) |
33 | 32 | adantl 482 |
. . . . . . . . 9
β’ ((π¦ β {β
} β§ π§ β (Ο Γ
Ο)) β (π₯ =
β¨β
, π§β©
β βπ β
Ο βπ β
Ο π₯ = β¨β
,
β¨π, πβ©β©)) |
34 | 19, 33 | sylbid 239 |
. . . . . . . 8
β’ ((π¦ β {β
} β§ π§ β (Ο Γ
Ο)) β (π₯ =
β¨π¦, π§β© β βπ β Ο βπ β Ο π₯ = β¨β
, β¨π, πβ©β©)) |
35 | 34 | impcom 408 |
. . . . . . 7
β’ ((π₯ = β¨π¦, π§β© β§ (π¦ β {β
} β§ π§ β (Ο Γ Ο))) β
βπ β Ο
βπ β Ο
π₯ = β¨β
,
β¨π, πβ©β©) |
36 | 35 | exlimivv 1935 |
. . . . . 6
β’
(βπ¦βπ§(π₯ = β¨π¦, π§β© β§ (π¦ β {β
} β§ π§ β (Ο Γ Ο))) β
βπ β Ο
βπ β Ο
π₯ = β¨β
,
β¨π, πβ©β©) |
37 | 15, 36 | syl 17 |
. . . . 5
β’ (π₯ β ({β
} Γ
(Ο Γ Ο)) β βπ β Ο βπ β Ο π₯ = β¨β
, β¨π, πβ©β©) |
38 | 14, 37 | impbii 208 |
. . . 4
β’
(βπ β
Ο βπ β
Ο π₯ = β¨β
,
β¨π, πβ©β© β π₯ β ({β
} Γ (Ο Γ
Ο))) |
39 | 6, 38 | bitri 274 |
. . 3
β’
(βπ β
Ο βπ β
Ο π₯ = (πβππ) β π₯ β ({β
} Γ (Ο Γ
Ο))) |
40 | 3, 39 | mpgbir 1801 |
. 2
β’ {π₯ β£ βπ β Ο βπ β Ο π₯ = (πβππ)} = ({β
} Γ (Ο Γ
Ο)) |
41 | 1, 2, 40 | 3eqtri 2764 |
1
β’
(Fmlaββ
) = ({β
} Γ (Ο Γ
Ο)) |