Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0xp Structured version   Visualization version   GIF version

Theorem fmla0xp 35351
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi vj ("Godel-set of membership") coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmla0xp (Fmla‘∅) = ({∅} × (ω × ω))

Proof of Theorem fmla0xp
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 35350 . 2 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
2 rabab 3520 . 2 {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3 eqabcb 2886 . . 3 ({𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω)) ↔ ∀𝑥(∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω))))
4 goel 35315 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
54eqeq2d 2751 . . . . 5 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
652rexbiia 3224 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
7 0ex 5325 . . . . . . . . . 10 ∅ ∈ V
87snid 4684 . . . . . . . . 9 ∅ ∈ {∅}
98a1i 11 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ {∅})
10 opelxpi 5737 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨𝑖, 𝑗⟩ ∈ (ω × ω))
119, 10opelxpd 5739 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω)))
12 eleq1 2832 . . . . . . 7 (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑥 ∈ ({∅} × (ω × ω)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω))))
1311, 12syl5ibrcom 247 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω))))
1413rexlimivv 3207 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω)))
15 elxpi 5722 . . . . . 6 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))))
16 elsni 4665 . . . . . . . . . . . 12 (𝑦 ∈ {∅} → 𝑦 = ∅)
1716opeq1d 4903 . . . . . . . . . . 11 (𝑦 ∈ {∅} → ⟨𝑦, 𝑧⟩ = ⟨∅, 𝑧⟩)
1817eqeq2d 2751 . . . . . . . . . 10 (𝑦 ∈ {∅} → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
1918adantr 480 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
20 elxpi 5722 . . . . . . . . . . 11 (𝑧 ∈ (ω × ω) → ∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)))
21 simprr 772 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → (𝑖 ∈ ω ∧ 𝑗 ∈ ω))
22 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, 𝑧⟩)
23 opeq2 4898 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑖, 𝑗⟩ → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2423adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2524adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2622, 25eqtrd 2780 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2721, 26jca 511 . . . . . . . . . . . . . 14 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
2827ex 412 . . . . . . . . . . . . 13 (𝑥 = ⟨∅, 𝑧⟩ → ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
29282eximdv 1918 . . . . . . . . . . . 12 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
30 r2ex 3202 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3129, 30imbitrrdi 252 . . . . . . . . . . 11 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3220, 31syl5com 31 . . . . . . . . . 10 (𝑧 ∈ (ω × ω) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3332adantl 481 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3419, 33sylbid 240 . . . . . . . 8 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3534impcom 407 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3635exlimivv 1931 . . . . . 6 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3715, 36syl 17 . . . . 5 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3814, 37impbii 209 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ 𝑥 ∈ ({∅} × (ω × ω)))
396, 38bitri 275 . . 3 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω)))
403, 39mpgbir 1797 . 2 {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω))
411, 2, 403eqtri 2772 1 (Fmla‘∅) = ({∅} × (ω × ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  {crab 3443  Vcvv 3488  c0 4352  {csn 4648  cop 4654   × cxp 5698  cfv 6573  (class class class)co 7448  ωcom 7903  𝑔cgoe 35301  Fmlacfmla 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-goel 35308  df-sat 35311  df-fmla 35313
This theorem is referenced by:  fmla1  35355  satefvfmla0  35386  prv1n  35399
  Copyright terms: Public domain W3C validator