Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmla0xp Structured version   Visualization version   GIF version

Theorem fmla0xp 33345
Description: The valid Godel formulas of height 0 is the set of all formulas of the form vi vj ("Godel-set of membership") coded as ⟨∅, ⟨𝑖, 𝑗⟩⟩. (Contributed by AV, 15-Sep-2023.)
Assertion
Ref Expression
fmla0xp (Fmla‘∅) = ({∅} × (ω × ω))

Proof of Theorem fmla0xp
Dummy variables 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmla0 33344 . 2 (Fmla‘∅) = {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
2 rabab 3460 . 2 {𝑥 ∈ V ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)}
3 abeq1 2873 . . 3 ({𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω)) ↔ ∀𝑥(∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω))))
4 goel 33309 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑖𝑔𝑗) = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
54eqeq2d 2749 . . . . 5 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
652rexbiia 3227 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
7 0ex 5231 . . . . . . . . . 10 ∅ ∈ V
87snid 4597 . . . . . . . . 9 ∅ ∈ {∅}
98a1i 11 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ∅ ∈ {∅})
10 opelxpi 5626 . . . . . . . 8 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨𝑖, 𝑗⟩ ∈ (ω × ω))
119, 10opelxpd 5627 . . . . . . 7 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω)))
12 eleq1 2826 . . . . . . 7 (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → (𝑥 ∈ ({∅} × (ω × ω)) ↔ ⟨∅, ⟨𝑖, 𝑗⟩⟩ ∈ ({∅} × (ω × ω))))
1311, 12syl5ibrcom 246 . . . . . 6 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → (𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω))))
1413rexlimivv 3221 . . . . 5 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ → 𝑥 ∈ ({∅} × (ω × ω)))
15 elxpi 5611 . . . . . 6 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))))
16 elsni 4578 . . . . . . . . . . . 12 (𝑦 ∈ {∅} → 𝑦 = ∅)
1716opeq1d 4810 . . . . . . . . . . 11 (𝑦 ∈ {∅} → ⟨𝑦, 𝑧⟩ = ⟨∅, 𝑧⟩)
1817eqeq2d 2749 . . . . . . . . . 10 (𝑦 ∈ {∅} → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
1918adantr 481 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ ↔ 𝑥 = ⟨∅, 𝑧⟩))
20 elxpi 5611 . . . . . . . . . . 11 (𝑧 ∈ (ω × ω) → ∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)))
21 simprr 770 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → (𝑖 ∈ ω ∧ 𝑗 ∈ ω))
22 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, 𝑧⟩)
23 opeq2 4805 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑖, 𝑗⟩ → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2423adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2524adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ⟨∅, 𝑧⟩ = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2622, 25eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
2721, 26jca 512 . . . . . . . . . . . . . 14 ((𝑥 = ⟨∅, 𝑧⟩ ∧ (𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω))) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
2827ex 413 . . . . . . . . . . . . 13 (𝑥 = ⟨∅, 𝑧⟩ → ((𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
29282eximdv 1922 . . . . . . . . . . . 12 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)))
30 r2ex 3232 . . . . . . . . . . . 12 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ ∃𝑖𝑗((𝑖 ∈ ω ∧ 𝑗 ∈ ω) ∧ 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3129, 30syl6ibr 251 . . . . . . . . . . 11 (𝑥 = ⟨∅, 𝑧⟩ → (∃𝑖𝑗(𝑧 = ⟨𝑖, 𝑗⟩ ∧ (𝑖 ∈ ω ∧ 𝑗 ∈ ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3220, 31syl5com 31 . . . . . . . . . 10 (𝑧 ∈ (ω × ω) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3332adantl 482 . . . . . . . . 9 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨∅, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3419, 33sylbid 239 . . . . . . . 8 ((𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω)) → (𝑥 = ⟨𝑦, 𝑧⟩ → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩))
3534impcom 408 . . . . . . 7 ((𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3635exlimivv 1935 . . . . . 6 (∃𝑦𝑧(𝑥 = ⟨𝑦, 𝑧⟩ ∧ (𝑦 ∈ {∅} ∧ 𝑧 ∈ (ω × ω))) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3715, 36syl 17 . . . . 5 (𝑥 ∈ ({∅} × (ω × ω)) → ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩)
3814, 37impbii 208 . . . 4 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = ⟨∅, ⟨𝑖, 𝑗⟩⟩ ↔ 𝑥 ∈ ({∅} × (ω × ω)))
396, 38bitri 274 . . 3 (∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗) ↔ 𝑥 ∈ ({∅} × (ω × ω)))
403, 39mpgbir 1802 . 2 {𝑥 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω 𝑥 = (𝑖𝑔𝑗)} = ({∅} × (ω × ω))
411, 2, 403eqtri 2770 1 (Fmla‘∅) = ({∅} × (ω × ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wrex 3065  {crab 3068  Vcvv 3432  c0 4256  {csn 4561  cop 4567   × cxp 5587  cfv 6433  (class class class)co 7275  ωcom 7712  𝑔cgoe 33295  Fmlacfmla 33299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-map 8617  df-goel 33302  df-sat 33305  df-fmla 33307
This theorem is referenced by:  fmla1  33349  satefvfmla0  33380  prv1n  33393
  Copyright terms: Public domain W3C validator