Step | Hyp | Ref
| Expression |
1 | | cnref1o.1 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
2 | | ovex 7308 |
. . . . 5
⊢ (𝑥 + (i · 𝑦)) ∈ V |
3 | 1, 2 | fnmpoi 7910 |
. . . 4
⊢ 𝐹 Fn (ℝ ×
ℝ) |
4 | | 1st2nd2 7870 |
. . . . . . . . 9
⊢ (𝑧 ∈ (ℝ ×
ℝ) → 𝑧 =
〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
5 | 4 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉)) |
6 | | df-ov 7278 |
. . . . . . . 8
⊢
((1st ‘𝑧)𝐹(2nd ‘𝑧)) = (𝐹‘〈(1st ‘𝑧), (2nd ‘𝑧)〉) |
7 | 5, 6 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = ((1st ‘𝑧)𝐹(2nd ‘𝑧))) |
8 | | xp1st 7863 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (1st ‘𝑧) ∈ ℝ) |
9 | | xp2nd 7864 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (2nd ‘𝑧) ∈ ℝ) |
10 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑥 = (1st ‘𝑧) → (𝑥 + (i · 𝑦)) = ((1st ‘𝑧) + (i · 𝑦))) |
11 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑦 = (2nd ‘𝑧) → (i · 𝑦) = (i · (2nd
‘𝑧))) |
12 | 11 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑦 = (2nd ‘𝑧) → ((1st
‘𝑧) + (i ·
𝑦)) = ((1st
‘𝑧) + (i ·
(2nd ‘𝑧)))) |
13 | | ovex 7308 |
. . . . . . . . 9
⊢
((1st ‘𝑧) + (i · (2nd ‘𝑧))) ∈ V |
14 | 10, 12, 1, 13 | ovmpo 7433 |
. . . . . . . 8
⊢
(((1st ‘𝑧) ∈ ℝ ∧ (2nd
‘𝑧) ∈ ℝ)
→ ((1st ‘𝑧)𝐹(2nd ‘𝑧)) = ((1st ‘𝑧) + (i · (2nd
‘𝑧)))) |
15 | 8, 9, 14 | syl2anc 584 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → ((1st ‘𝑧)𝐹(2nd ‘𝑧)) = ((1st ‘𝑧) + (i · (2nd
‘𝑧)))) |
16 | 7, 15 | eqtrd 2778 |
. . . . . 6
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) = ((1st ‘𝑧) + (i · (2nd
‘𝑧)))) |
17 | 8 | recnd 11003 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (1st ‘𝑧) ∈ ℂ) |
18 | | ax-icn 10930 |
. . . . . . . 8
⊢ i ∈
ℂ |
19 | 9 | recnd 11003 |
. . . . . . . 8
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (2nd ‘𝑧) ∈ ℂ) |
20 | | mulcl 10955 |
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ (2nd ‘𝑧) ∈ ℂ) → (i ·
(2nd ‘𝑧))
∈ ℂ) |
21 | 18, 19, 20 | sylancr 587 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (i · (2nd ‘𝑧)) ∈ ℂ) |
22 | 17, 21 | addcld 10994 |
. . . . . 6
⊢ (𝑧 ∈ (ℝ ×
ℝ) → ((1st ‘𝑧) + (i · (2nd ‘𝑧))) ∈
ℂ) |
23 | 16, 22 | eqeltrd 2839 |
. . . . 5
⊢ (𝑧 ∈ (ℝ ×
ℝ) → (𝐹‘𝑧) ∈ ℂ) |
24 | 23 | rgen 3074 |
. . . 4
⊢
∀𝑧 ∈
(ℝ × ℝ)(𝐹‘𝑧) ∈ ℂ |
25 | | ffnfv 6992 |
. . . 4
⊢ (𝐹:(ℝ ×
ℝ)⟶ℂ ↔ (𝐹 Fn (ℝ × ℝ) ∧
∀𝑧 ∈ (ℝ
× ℝ)(𝐹‘𝑧) ∈ ℂ)) |
26 | 3, 24, 25 | mpbir2an 708 |
. . 3
⊢ 𝐹:(ℝ ×
ℝ)⟶ℂ |
27 | 8, 9 | jca 512 |
. . . . . . 7
⊢ (𝑧 ∈ (ℝ ×
ℝ) → ((1st ‘𝑧) ∈ ℝ ∧ (2nd
‘𝑧) ∈
ℝ)) |
28 | | xp1st 7863 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (1st ‘𝑤) ∈ ℝ) |
29 | | xp2nd 7864 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (2nd ‘𝑤) ∈ ℝ) |
30 | 28, 29 | jca 512 |
. . . . . . 7
⊢ (𝑤 ∈ (ℝ ×
ℝ) → ((1st ‘𝑤) ∈ ℝ ∧ (2nd
‘𝑤) ∈
ℝ)) |
31 | | cru 11965 |
. . . . . . 7
⊢
((((1st ‘𝑧) ∈ ℝ ∧ (2nd
‘𝑧) ∈ ℝ)
∧ ((1st ‘𝑤) ∈ ℝ ∧ (2nd
‘𝑤) ∈ ℝ))
→ (((1st ‘𝑧) + (i · (2nd ‘𝑧))) = ((1st
‘𝑤) + (i ·
(2nd ‘𝑤)))
↔ ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
32 | 27, 30, 31 | syl2an 596 |
. . . . . 6
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → (((1st ‘𝑧) + (i · (2nd ‘𝑧))) = ((1st
‘𝑤) + (i ·
(2nd ‘𝑤)))
↔ ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd ‘𝑧) = (2nd ‘𝑤)))) |
33 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
34 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (1st ‘𝑧) = (1st ‘𝑤)) |
35 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (2nd ‘𝑧) = (2nd ‘𝑤)) |
36 | 35 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑤 → (i · (2nd
‘𝑧)) = (i ·
(2nd ‘𝑤))) |
37 | 34, 36 | oveq12d 7293 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → ((1st ‘𝑧) + (i · (2nd
‘𝑧))) =
((1st ‘𝑤)
+ (i · (2nd ‘𝑤)))) |
38 | 33, 37 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) = ((1st ‘𝑧) + (i · (2nd
‘𝑧))) ↔ (𝐹‘𝑤) = ((1st ‘𝑤) + (i · (2nd
‘𝑤))))) |
39 | 38, 16 | vtoclga 3513 |
. . . . . . 7
⊢ (𝑤 ∈ (ℝ ×
ℝ) → (𝐹‘𝑤) = ((1st ‘𝑤) + (i · (2nd
‘𝑤)))) |
40 | 16, 39 | eqeqan12d 2752 |
. . . . . 6
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ ((1st ‘𝑧) + (i · (2nd
‘𝑧))) =
((1st ‘𝑤)
+ (i · (2nd ‘𝑤))))) |
41 | | 1st2nd2 7870 |
. . . . . . . 8
⊢ (𝑤 ∈ (ℝ ×
ℝ) → 𝑤 =
〈(1st ‘𝑤), (2nd ‘𝑤)〉) |
42 | 4, 41 | eqeqan12d 2752 |
. . . . . . 7
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → (𝑧 = 𝑤 ↔ 〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈(1st
‘𝑤), (2nd
‘𝑤)〉)) |
43 | | fvex 6787 |
. . . . . . . 8
⊢
(1st ‘𝑧) ∈ V |
44 | | fvex 6787 |
. . . . . . . 8
⊢
(2nd ‘𝑧) ∈ V |
45 | 43, 44 | opth 5391 |
. . . . . . 7
⊢
(〈(1st ‘𝑧), (2nd ‘𝑧)〉 = 〈(1st ‘𝑤), (2nd ‘𝑤)〉 ↔ ((1st
‘𝑧) = (1st
‘𝑤) ∧
(2nd ‘𝑧) =
(2nd ‘𝑤))) |
46 | 42, 45 | bitrdi 287 |
. . . . . 6
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st ‘𝑧) = (1st ‘𝑤) ∧ (2nd
‘𝑧) = (2nd
‘𝑤)))) |
47 | 32, 40, 46 | 3bitr4d 311 |
. . . . 5
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
48 | 47 | biimpd 228 |
. . . 4
⊢ ((𝑧 ∈ (ℝ ×
ℝ) ∧ 𝑤 ∈
(ℝ × ℝ)) → ((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤)) |
49 | 48 | rgen2 3120 |
. . 3
⊢
∀𝑧 ∈
(ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤) |
50 | | dff13 7128 |
. . 3
⊢ (𝐹:(ℝ ×
ℝ)–1-1→ℂ ↔
(𝐹:(ℝ ×
ℝ)⟶ℂ ∧ ∀𝑧 ∈ (ℝ ×
ℝ)∀𝑤 ∈
(ℝ × ℝ)((𝐹‘𝑧) = (𝐹‘𝑤) → 𝑧 = 𝑤))) |
51 | 26, 49, 50 | mpbir2an 708 |
. 2
⊢ 𝐹:(ℝ ×
ℝ)–1-1→ℂ |
52 | | cnre 10972 |
. . . . . 6
⊢ (𝑤 ∈ ℂ →
∃𝑢 ∈ ℝ
∃𝑣 ∈ ℝ
𝑤 = (𝑢 + (i · 𝑣))) |
53 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑥 + (i · 𝑦)) = (𝑢 + (i · 𝑦))) |
54 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (i · 𝑦) = (i · 𝑣)) |
55 | 54 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑢 + (i · 𝑦)) = (𝑢 + (i · 𝑣))) |
56 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝑢 + (i · 𝑣)) ∈ V |
57 | 53, 55, 1, 56 | ovmpo 7433 |
. . . . . . . 8
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣))) |
58 | 57 | eqeq2d 2749 |
. . . . . . 7
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = (𝑢 + (i · 𝑣)))) |
59 | 58 | 2rexbiia 3227 |
. . . . . 6
⊢
(∃𝑢 ∈
ℝ ∃𝑣 ∈
ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣))) |
60 | 52, 59 | sylibr 233 |
. . . . 5
⊢ (𝑤 ∈ ℂ →
∃𝑢 ∈ ℝ
∃𝑣 ∈ ℝ
𝑤 = (𝑢𝐹𝑣)) |
61 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝐹‘𝑧) = (𝐹‘〈𝑢, 𝑣〉)) |
62 | | df-ov 7278 |
. . . . . . . 8
⊢ (𝑢𝐹𝑣) = (𝐹‘〈𝑢, 𝑣〉) |
63 | 61, 62 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝐹‘𝑧) = (𝑢𝐹𝑣)) |
64 | 63 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑧 = 〈𝑢, 𝑣〉 → (𝑤 = (𝐹‘𝑧) ↔ 𝑤 = (𝑢𝐹𝑣))) |
65 | 64 | rexxp 5751 |
. . . . 5
⊢
(∃𝑧 ∈
(ℝ × ℝ)𝑤
= (𝐹‘𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣)) |
66 | 60, 65 | sylibr 233 |
. . . 4
⊢ (𝑤 ∈ ℂ →
∃𝑧 ∈ (ℝ
× ℝ)𝑤 = (𝐹‘𝑧)) |
67 | 66 | rgen 3074 |
. . 3
⊢
∀𝑤 ∈
ℂ ∃𝑧 ∈
(ℝ × ℝ)𝑤
= (𝐹‘𝑧) |
68 | | dffo3 6978 |
. . 3
⊢ (𝐹:(ℝ ×
ℝ)–onto→ℂ ↔
(𝐹:(ℝ ×
ℝ)⟶ℂ ∧ ∀𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹‘𝑧))) |
69 | 26, 67, 68 | mpbir2an 708 |
. 2
⊢ 𝐹:(ℝ ×
ℝ)–onto→ℂ |
70 | | df-f1o 6440 |
. 2
⊢ (𝐹:(ℝ ×
ℝ)–1-1-onto→ℂ ↔ (𝐹:(ℝ × ℝ)–1-1→ℂ ∧ 𝐹:(ℝ × ℝ)–onto→ℂ)) |
71 | 51, 69, 70 | mpbir2an 708 |
1
⊢ 𝐹:(ℝ ×
ℝ)–1-1-onto→ℂ |