Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnref1o Structured version   Visualization version   GIF version

Theorem cnref1o 12438
 Description: There is a natural one-to-one mapping from (ℝ × ℝ) to ℂ, where we map ⟨𝑥, 𝑦⟩ to (𝑥 + (i · 𝑦)). In our construction of the complex numbers, this is in fact our definition of ℂ (see df-c 10594), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
Assertion
Ref Expression
cnref1o 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem cnref1o
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnref1o.1 . . . . 5 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 ovex 7189 . . . . 5 (𝑥 + (i · 𝑦)) ∈ V
31, 2fnmpoi 7778 . . . 4 𝐹 Fn (ℝ × ℝ)
4 1st2nd2 7738 . . . . . . . . 9 (𝑧 ∈ (ℝ × ℝ) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
54fveq2d 6667 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩))
6 df-ov 7159 . . . . . . . 8 ((1st𝑧)𝐹(2nd𝑧)) = (𝐹‘⟨(1st𝑧), (2nd𝑧)⟩)
75, 6eqtr4di 2811 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧)𝐹(2nd𝑧)))
8 xp1st 7731 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℝ)
9 xp2nd 7732 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℝ)
10 oveq1 7163 . . . . . . . . 9 (𝑥 = (1st𝑧) → (𝑥 + (i · 𝑦)) = ((1st𝑧) + (i · 𝑦)))
11 oveq2 7164 . . . . . . . . . 10 (𝑦 = (2nd𝑧) → (i · 𝑦) = (i · (2nd𝑧)))
1211oveq2d 7172 . . . . . . . . 9 (𝑦 = (2nd𝑧) → ((1st𝑧) + (i · 𝑦)) = ((1st𝑧) + (i · (2nd𝑧))))
13 ovex 7189 . . . . . . . . 9 ((1st𝑧) + (i · (2nd𝑧))) ∈ V
1410, 12, 1, 13ovmpo 7311 . . . . . . . 8 (((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
158, 9, 14syl2anc 587 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧)𝐹(2nd𝑧)) = ((1st𝑧) + (i · (2nd𝑧))))
167, 15eqtrd 2793 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))))
178recnd 10720 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (1st𝑧) ∈ ℂ)
18 ax-icn 10647 . . . . . . . 8 i ∈ ℂ
199recnd 10720 . . . . . . . 8 (𝑧 ∈ (ℝ × ℝ) → (2nd𝑧) ∈ ℂ)
20 mulcl 10672 . . . . . . . 8 ((i ∈ ℂ ∧ (2nd𝑧) ∈ ℂ) → (i · (2nd𝑧)) ∈ ℂ)
2118, 19, 20sylancr 590 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → (i · (2nd𝑧)) ∈ ℂ)
2217, 21addcld 10711 . . . . . 6 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) + (i · (2nd𝑧))) ∈ ℂ)
2316, 22eqeltrd 2852 . . . . 5 (𝑧 ∈ (ℝ × ℝ) → (𝐹𝑧) ∈ ℂ)
2423rgen 3080 . . . 4 𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ
25 ffnfv 6879 . . . 4 (𝐹:(ℝ × ℝ)⟶ℂ ↔ (𝐹 Fn (ℝ × ℝ) ∧ ∀𝑧 ∈ (ℝ × ℝ)(𝐹𝑧) ∈ ℂ))
263, 24, 25mpbir2an 710 . . 3 𝐹:(ℝ × ℝ)⟶ℂ
278, 9jca 515 . . . . . . 7 (𝑧 ∈ (ℝ × ℝ) → ((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ))
28 xp1st 7731 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (1st𝑤) ∈ ℝ)
29 xp2nd 7732 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → (2nd𝑤) ∈ ℝ)
3028, 29jca 515 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ))
31 cru 11679 . . . . . . 7 ((((1st𝑧) ∈ ℝ ∧ (2nd𝑧) ∈ ℝ) ∧ ((1st𝑤) ∈ ℝ ∧ (2nd𝑤) ∈ ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
3227, 30, 31syl2an 598 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))) ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
33 fveq2 6663 . . . . . . . . 9 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
34 fveq2 6663 . . . . . . . . . 10 (𝑧 = 𝑤 → (1st𝑧) = (1st𝑤))
35 fveq2 6663 . . . . . . . . . . 11 (𝑧 = 𝑤 → (2nd𝑧) = (2nd𝑤))
3635oveq2d 7172 . . . . . . . . . 10 (𝑧 = 𝑤 → (i · (2nd𝑧)) = (i · (2nd𝑤)))
3734, 36oveq12d 7174 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤))))
3833, 37eqeq12d 2774 . . . . . . . 8 (𝑧 = 𝑤 → ((𝐹𝑧) = ((1st𝑧) + (i · (2nd𝑧))) ↔ (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤)))))
3938, 16vtoclga 3494 . . . . . . 7 (𝑤 ∈ (ℝ × ℝ) → (𝐹𝑤) = ((1st𝑤) + (i · (2nd𝑤))))
4016, 39eqeqan12d 2775 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ((1st𝑧) + (i · (2nd𝑧))) = ((1st𝑤) + (i · (2nd𝑤)))))
41 1st2nd2 7738 . . . . . . . 8 (𝑤 ∈ (ℝ × ℝ) → 𝑤 = ⟨(1st𝑤), (2nd𝑤)⟩)
424, 41eqeqan12d 2775 . . . . . . 7 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩))
43 fvex 6676 . . . . . . . 8 (1st𝑧) ∈ V
44 fvex 6676 . . . . . . . 8 (2nd𝑧) ∈ V
4543, 44opth 5340 . . . . . . 7 (⟨(1st𝑧), (2nd𝑧)⟩ = ⟨(1st𝑤), (2nd𝑤)⟩ ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤)))
4642, 45bitrdi 290 . . . . . 6 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → (𝑧 = 𝑤 ↔ ((1st𝑧) = (1st𝑤) ∧ (2nd𝑧) = (2nd𝑤))))
4732, 40, 463bitr4d 314 . . . . 5 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
4847biimpd 232 . . . 4 ((𝑧 ∈ (ℝ × ℝ) ∧ 𝑤 ∈ (ℝ × ℝ)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
4948rgen2 3132 . . 3 𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
50 dff13 7011 . . 3 (𝐹:(ℝ × ℝ)–1-1→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑧 ∈ (ℝ × ℝ)∀𝑤 ∈ (ℝ × ℝ)((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
5126, 49, 50mpbir2an 710 . 2 𝐹:(ℝ × ℝ)–1-1→ℂ
52 cnre 10689 . . . . . 6 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
53 oveq1 7163 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + (i · 𝑦)) = (𝑢 + (i · 𝑦)))
54 oveq2 7164 . . . . . . . . . 10 (𝑦 = 𝑣 → (i · 𝑦) = (i · 𝑣))
5554oveq2d 7172 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 + (i · 𝑦)) = (𝑢 + (i · 𝑣)))
56 ovex 7189 . . . . . . . . 9 (𝑢 + (i · 𝑣)) ∈ V
5753, 55, 1, 56ovmpo 7311 . . . . . . . 8 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑢𝐹𝑣) = (𝑢 + (i · 𝑣)))
5857eqeq2d 2769 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑤 = (𝑢𝐹𝑣) ↔ 𝑤 = (𝑢 + (i · 𝑣))))
59582rexbiia 3222 . . . . . 6 (∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢 + (i · 𝑣)))
6052, 59sylibr 237 . . . . 5 (𝑤 ∈ ℂ → ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
61 fveq2 6663 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝐹‘⟨𝑢, 𝑣⟩))
62 df-ov 7159 . . . . . . . 8 (𝑢𝐹𝑣) = (𝐹‘⟨𝑢, 𝑣⟩)
6361, 62eqtr4di 2811 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝐹𝑧) = (𝑢𝐹𝑣))
6463eqeq2d 2769 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (𝑤 = (𝐹𝑧) ↔ 𝑤 = (𝑢𝐹𝑣)))
6564rexxp 5688 . . . . 5 (∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧) ↔ ∃𝑢 ∈ ℝ ∃𝑣 ∈ ℝ 𝑤 = (𝑢𝐹𝑣))
6660, 65sylibr 237 . . . 4 (𝑤 ∈ ℂ → ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧))
6766rgen 3080 . . 3 𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)
68 dffo3 6865 . . 3 (𝐹:(ℝ × ℝ)–onto→ℂ ↔ (𝐹:(ℝ × ℝ)⟶ℂ ∧ ∀𝑤 ∈ ℂ ∃𝑧 ∈ (ℝ × ℝ)𝑤 = (𝐹𝑧)))
6926, 67, 68mpbir2an 710 . 2 𝐹:(ℝ × ℝ)–onto→ℂ
70 df-f1o 6347 . 2 (𝐹:(ℝ × ℝ)–1-1-onto→ℂ ↔ (𝐹:(ℝ × ℝ)–1-1→ℂ ∧ 𝐹:(ℝ × ℝ)–onto→ℂ))
7151, 69, 70mpbir2an 710 1 𝐹:(ℝ × ℝ)–1-1-onto→ℂ
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071  ⟨cop 4531   × cxp 5526   Fn wfn 6335  ⟶wf 6336  –1-1→wf1 6337  –onto→wfo 6338  –1-1-onto→wf1o 6339  ‘cfv 6340  (class class class)co 7156   ∈ cmpo 7158  1st c1st 7697  2nd c2nd 7698  ℂcc 10586  ℝcr 10587  ici 10590   + caddc 10591   · cmul 10593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349 This theorem is referenced by:  cnexALT  12439  cnrecnv  14585  cpnnen  15643  cnheiborlem  23669  mbfimaopnlem  24369
 Copyright terms: Public domain W3C validator