MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnwspthsnon Structured version   Visualization version   GIF version

Theorem wspthsnwspthsnon 27382
Description: A simple path of fixed length is a simple path of fixed length between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-May-2021.) (Revised by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wwlksnwwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthsnwspthsnon (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
Distinct variable groups:   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem wspthsnwspthsnon
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 iswspthn 27314 . 2 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
2 wwlksnwwlksnon.v . . . . 5 𝑉 = (Vtx‘𝐺)
32wwlksnwwlksnon 27381 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
43anbi1i 623 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
5 r19.41vv 3310 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
64, 5bitr4i 279 . 2 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
7 3anass 1088 . . . . . . . 8 ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
87a1i 11 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))))
9 vex 3440 . . . . . . . 8 𝑓 ∈ V
102isspthonpth 27217 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑓 ∈ V ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
119, 10mpanr1 699 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
12 spthiswlk 27196 . . . . . . . . . 10 (𝑓(SPaths‘𝐺)𝑊𝑓(Walks‘𝐺)𝑊)
13 wlklenvm1 27086 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑊 → (♯‘𝑓) = ((♯‘𝑊) − 1))
14 wwlknon 27322 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
15 simpl2 1185 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘0) = 𝑎)
16 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = ((♯‘𝑊) − 1))
17 wwlknbp1 27309 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
18 oveq1 7023 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
19183ad2ant3 1128 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
20 nn0cn 11755 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21 pncan1 10912 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
23223ad2ant1 1126 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁)
2419, 23eqtrd 2831 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = 𝑁)
2517, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((♯‘𝑊) − 1) = 𝑁)
26253ad2ant1 1126 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → ((♯‘𝑊) − 1) = 𝑁)
2726adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) = 𝑁)
2816, 27eqtrd 2831 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = 𝑁)
2928fveq2d 6542 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = (𝑊𝑁))
30 simpl3 1186 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊𝑁) = 𝑏)
3129, 30eqtrd 2831 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = 𝑏)
3215, 31jca 512 . . . . . . . . . . . . . 14 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))
3332ex 413 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3414, 33sylbi 218 . . . . . . . . . . . 12 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3534adantl 482 . . . . . . . . . . 11 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3635com12 32 . . . . . . . . . 10 ((♯‘𝑓) = ((♯‘𝑊) − 1) → (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3712, 13, 363syl 18 . . . . . . . . 9 (𝑓(SPaths‘𝐺)𝑊 → (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3837com12 32 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3938pm4.71d 562 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))))
408, 11, 393bitr4rd 313 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4140exbidv 1899 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (∃𝑓 𝑓(SPaths‘𝐺)𝑊 ↔ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4241pm5.32da 579 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊)))
43 wspthnon 27323 . . . 4 (𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4442, 43syl6bbr 290 . . 3 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏)))
45442rexbiia 3261 . 2 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
461, 6, 453bitri 298 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  wrex 3106  Vcvv 3437   class class class wbr 4962  cfv 6225  (class class class)co 7016  cc 10381  0cc0 10383  1c1 10384   + caddc 10386  cmin 10717  0cn0 11745  chash 13540  Word cword 13707  Vtxcvtx 26464  Walkscwlks 27061  SPathscspths 27181  SPathsOncspthson 27183   WWalksN cwwlksn 27291   WWalksNOn cwwlksnon 27292   WSPathsN cwwspthsn 27293   WSPathsNOn cwwspthsnon 27294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-ifp 1056  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884  df-hash 13541  df-word 13708  df-wlks 27064  df-wlkson 27065  df-trls 27159  df-trlson 27160  df-pths 27184  df-spths 27185  df-spthson 27187  df-wwlks 27295  df-wwlksn 27296  df-wwlksnon 27297  df-wspthsn 27298  df-wspthsnon 27299
This theorem is referenced by:  wspniunwspnon  27389  elwspths2spth  27433  fusgr2wsp2nb  27805
  Copyright terms: Public domain W3C validator