MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnwspthsnon Structured version   Visualization version   GIF version

Theorem wspthsnwspthsnon 28861
Description: A simple path of fixed length is a simple path of fixed length between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-May-2021.) (Revised by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wwlksnwwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthsnwspthsnon (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
Distinct variable groups:   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem wspthsnwspthsnon
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 iswspthn 28794 . 2 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
2 wwlksnwwlksnon.v . . . . 5 𝑉 = (Vtx‘𝐺)
32wwlksnwwlksnon 28860 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
43anbi1i 624 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
5 r19.41vv 3215 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
64, 5bitr4i 277 . 2 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
7 3anass 1095 . . . . . . . 8 ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
87a1i 11 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))))
9 vex 3449 . . . . . . . 8 𝑓 ∈ V
102isspthonpth 28697 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑓 ∈ V ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
119, 10mpanr1 701 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
12 spthiswlk 28676 . . . . . . . . . 10 (𝑓(SPaths‘𝐺)𝑊𝑓(Walks‘𝐺)𝑊)
13 wlklenvm1 28570 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑊 → (♯‘𝑓) = ((♯‘𝑊) − 1))
14 wwlknon 28802 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
15 simpl2 1192 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘0) = 𝑎)
16 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = ((♯‘𝑊) − 1))
17 wwlknbp1 28789 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
18 oveq1 7364 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
19183ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
20 nn0cn 12423 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21 pncan1 11579 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
23223ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁)
2419, 23eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = 𝑁)
2517, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((♯‘𝑊) − 1) = 𝑁)
26253ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → ((♯‘𝑊) − 1) = 𝑁)
2726adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) = 𝑁)
2816, 27eqtrd 2776 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = 𝑁)
2928fveq2d 6846 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = (𝑊𝑁))
30 simpl3 1193 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊𝑁) = 𝑏)
3129, 30eqtrd 2776 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = 𝑏)
3215, 31jca 512 . . . . . . . . . . . . . 14 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))
3332ex 413 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3414, 33sylbi 216 . . . . . . . . . . . 12 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3534adantl 482 . . . . . . . . . . 11 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3635com12 32 . . . . . . . . . 10 ((♯‘𝑓) = ((♯‘𝑊) − 1) → (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3712, 13, 363syl 18 . . . . . . . . 9 (𝑓(SPaths‘𝐺)𝑊 → (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3837com12 32 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3938pm4.71d 562 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))))
408, 11, 393bitr4rd 311 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4140exbidv 1924 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (∃𝑓 𝑓(SPaths‘𝐺)𝑊 ↔ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4241pm5.32da 579 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊)))
43 wspthnon 28803 . . . 4 (𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4442, 43bitr4di 288 . . 3 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏)))
45442rexbiia 3209 . 2 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
461, 6, 453bitri 296 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wrex 3073  Vcvv 3445   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  0cn0 12413  chash 14230  Word cword 14402  Vtxcvtx 27947  Walkscwlks 28544  SPathscspths 28661  SPathsOncspthson 28663   WWalksN cwwlksn 28771   WWalksNOn cwwlksnon 28772   WSPathsN cwwspthsn 28773   WSPathsNOn cwwspthsnon 28774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-wlks 28547  df-wlkson 28548  df-trls 28640  df-trlson 28641  df-pths 28664  df-spths 28665  df-spthson 28667  df-wwlks 28775  df-wwlksn 28776  df-wwlksnon 28777  df-wspthsn 28778  df-wspthsnon 28779
This theorem is referenced by:  wspniunwspnon  28868  elwspths2spth  28912  fusgr2wsp2nb  29278
  Copyright terms: Public domain W3C validator