Step | Hyp | Ref
| Expression |
1 | | iswspthn 28214 |
. 2
⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
2 | | wwlksnwwlksnon.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
3 | 2 | wwlksnwwlksnon 28280 |
. . . 4
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) |
4 | 3 | anbi1i 624 |
. . 3
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
5 | | r19.41vv 3278 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
6 | 4, 5 | bitr4i 277 |
. 2
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
7 | | 3anass 1094 |
. . . . . . . 8
⊢ ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))) |
9 | | vex 3436 |
. . . . . . . 8
⊢ 𝑓 ∈ V |
10 | 2 | isspthonpth 28117 |
. . . . . . . 8
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑓 ∈ V ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
11 | 9, 10 | mpanr1 700 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
12 | | spthiswlk 28096 |
. . . . . . . . . 10
⊢ (𝑓(SPaths‘𝐺)𝑊 → 𝑓(Walks‘𝐺)𝑊) |
13 | | wlklenvm1 27989 |
. . . . . . . . . 10
⊢ (𝑓(Walks‘𝐺)𝑊 → (♯‘𝑓) = ((♯‘𝑊) − 1)) |
14 | | wwlknon 28222 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏)) |
15 | | simpl2 1191 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘0) = 𝑎) |
16 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = ((♯‘𝑊) − 1)) |
17 | | wwlknbp1 28209 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))) |
18 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝑊) =
(𝑁 + 1) →
((♯‘𝑊) −
1) = ((𝑁 + 1) −
1)) |
19 | 18 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) →
((♯‘𝑊) −
1) = ((𝑁 + 1) −
1)) |
20 | | nn0cn 12243 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
21 | | pncan1 11399 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
23 | 22 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁) |
24 | 19, 23 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ0
∧ 𝑊 ∈ Word
(Vtx‘𝐺) ∧
(♯‘𝑊) = (𝑁 + 1)) →
((♯‘𝑊) −
1) = 𝑁) |
25 | 17, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((♯‘𝑊) − 1) = 𝑁) |
26 | 25 | 3ad2ant1 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) → ((♯‘𝑊) − 1) = 𝑁) |
27 | 26 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) = 𝑁) |
28 | 16, 27 | eqtrd 2778 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = 𝑁) |
29 | 28 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = (𝑊‘𝑁)) |
30 | | simpl3 1192 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘𝑁) = 𝑏) |
31 | 29, 30 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = 𝑏) |
32 | 15, 31 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)) |
33 | 32 | ex 413 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘𝑁) = 𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
34 | 14, 33 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
35 | 34 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
36 | 35 | com12 32 |
. . . . . . . . . 10
⊢
((♯‘𝑓) =
((♯‘𝑊) −
1) → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
37 | 12, 13, 36 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑓(SPaths‘𝐺)𝑊 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
38 | 37 | com12 32 |
. . . . . . . 8
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))) |
39 | 38 | pm4.71d 562 |
. . . . . . 7
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))) |
40 | 8, 11, 39 | 3bitr4rd 312 |
. . . . . 6
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 ↔ 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊)) |
41 | 40 | exbidv 1924 |
. . . . 5
⊢ (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (∃𝑓 𝑓(SPaths‘𝐺)𝑊 ↔ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊)) |
42 | 41 | pm5.32da 579 |
. . . 4
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))) |
43 | | wspthnon 28223 |
. . . 4
⊢ (𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊)) |
44 | 42, 43 | bitr4di 289 |
. . 3
⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))) |
45 | 44 | 2rexbiia 3227 |
. 2
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏)) |
46 | 1, 6, 45 | 3bitri 297 |
1
⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏)) |