MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnwspthsnon Structured version   Visualization version   GIF version

Theorem wspthsnwspthsnon 29949
Description: A simple path of fixed length is a simple path of fixed length between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-May-2021.) (Revised by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wwlksnwwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthsnwspthsnon (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
Distinct variable groups:   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem wspthsnwspthsnon
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 iswspthn 29882 . 2 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
2 wwlksnwwlksnon.v . . . . 5 𝑉 = (Vtx‘𝐺)
32wwlksnwwlksnon 29948 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
43anbi1i 623 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
5 r19.41vv 3233 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
64, 5bitr4i 278 . 2 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
7 3anass 1095 . . . . . . . 8 ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
87a1i 11 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))))
9 vex 3492 . . . . . . . 8 𝑓 ∈ V
102isspthonpth 29785 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑓 ∈ V ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
119, 10mpanr1 702 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
12 spthiswlk 29764 . . . . . . . . . 10 (𝑓(SPaths‘𝐺)𝑊𝑓(Walks‘𝐺)𝑊)
13 wlklenvm1 29658 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑊 → (♯‘𝑓) = ((♯‘𝑊) − 1))
14 wwlknon 29890 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
15 simpl2 1192 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘0) = 𝑎)
16 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = ((♯‘𝑊) − 1))
17 wwlknbp1 29877 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
18 oveq1 7455 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
19183ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
20 nn0cn 12563 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21 pncan1 11714 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
23223ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁)
2419, 23eqtrd 2780 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = 𝑁)
2517, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((♯‘𝑊) − 1) = 𝑁)
26253ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → ((♯‘𝑊) − 1) = 𝑁)
2726adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) = 𝑁)
2816, 27eqtrd 2780 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = 𝑁)
2928fveq2d 6924 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = (𝑊𝑁))
30 simpl3 1193 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊𝑁) = 𝑏)
3129, 30eqtrd 2780 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = 𝑏)
3215, 31jca 511 . . . . . . . . . . . . . 14 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))
3332ex 412 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3414, 33sylbi 217 . . . . . . . . . . . 12 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3534adantl 481 . . . . . . . . . . 11 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3635com12 32 . . . . . . . . . 10 ((♯‘𝑓) = ((♯‘𝑊) − 1) → (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3712, 13, 363syl 18 . . . . . . . . 9 (𝑓(SPaths‘𝐺)𝑊 → (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3837com12 32 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3938pm4.71d 561 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))))
408, 11, 393bitr4rd 312 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4140exbidv 1920 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (∃𝑓 𝑓(SPaths‘𝐺)𝑊 ↔ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4241pm5.32da 578 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊)))
43 wspthnon 29891 . . . 4 (𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4442, 43bitr4di 289 . . 3 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏)))
45442rexbiia 3224 . 2 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
461, 6, 453bitri 297 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wrex 3076  Vcvv 3488   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  0cn0 12553  chash 14379  Word cword 14562  Vtxcvtx 29031  Walkscwlks 29632  SPathscspths 29749  SPathsOncspthson 29751   WWalksN cwwlksn 29859   WWalksNOn cwwlksnon 29860   WSPathsN cwwspthsn 29861   WSPathsNOn cwwspthsnon 29862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-wlks 29635  df-wlkson 29636  df-trls 29728  df-trlson 29729  df-pths 29752  df-spths 29753  df-spthson 29755  df-wwlks 29863  df-wwlksn 29864  df-wwlksnon 29865  df-wspthsn 29866  df-wspthsnon 29867
This theorem is referenced by:  wspniunwspnon  29956  elwspths2spth  30000  fusgr2wsp2nb  30366
  Copyright terms: Public domain W3C validator