MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnwspthsnon Structured version   Visualization version   GIF version

Theorem wspthsnwspthsnon 29099
Description: A simple path of fixed length is a simple path of fixed length between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 16-May-2021.) (Revised by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wwlksnwwlksnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspthsnwspthsnon (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
Distinct variable groups:   𝐺,𝑎,𝑏   𝑁,𝑎,𝑏   𝑉,𝑎,𝑏   𝑊,𝑎,𝑏

Proof of Theorem wspthsnwspthsnon
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 iswspthn 29032 . 2 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
2 wwlksnwwlksnon.v . . . . 5 𝑉 = (Vtx‘𝐺)
32wwlksnwwlksnon 29098 . . . 4 (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))
43anbi1i 624 . . 3 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
5 r19.41vv 3224 . . 3 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
64, 5bitr4i 277 . 2 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
7 3anass 1095 . . . . . . . 8 ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
87a1i 11 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏) ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))))
9 vex 3478 . . . . . . . 8 𝑓 ∈ V
102isspthonpth 28935 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑓 ∈ V ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏))) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
119, 10mpanr1 701 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ (𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
12 spthiswlk 28914 . . . . . . . . . 10 (𝑓(SPaths‘𝐺)𝑊𝑓(Walks‘𝐺)𝑊)
13 wlklenvm1 28808 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑊 → (♯‘𝑓) = ((♯‘𝑊) − 1))
14 wwlknon 29040 . . . . . . . . . . . . 13 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏))
15 simpl2 1192 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘0) = 𝑎)
16 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = ((♯‘𝑊) − 1))
17 wwlknbp1 29027 . . . . . . . . . . . . . . . . . . . . 21 (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)))
18 oveq1 7401 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
19183ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = ((𝑁 + 1) − 1))
20 nn0cn 12466 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21 pncan1 11622 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
2220, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
23223ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑁 + 1) − 1) = 𝑁)
2419, 23eqtrd 2772 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) − 1) = 𝑁)
2517, 24syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ (𝑁 WWalksN 𝐺) → ((♯‘𝑊) − 1) = 𝑁)
26253ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → ((♯‘𝑊) − 1) = 𝑁)
2726adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((♯‘𝑊) − 1) = 𝑁)
2816, 27eqtrd 2772 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (♯‘𝑓) = 𝑁)
2928fveq2d 6883 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = (𝑊𝑁))
30 simpl3 1193 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊𝑁) = 𝑏)
3129, 30eqtrd 2772 . . . . . . . . . . . . . . 15 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → (𝑊‘(♯‘𝑓)) = 𝑏)
3215, 31jca 512 . . . . . . . . . . . . . 14 (((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) ∧ (♯‘𝑓) = ((♯‘𝑊) − 1)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))
3332ex 413 . . . . . . . . . . . . 13 ((𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑊‘0) = 𝑎 ∧ (𝑊𝑁) = 𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3414, 33sylbi 216 . . . . . . . . . . . 12 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3534adantl 482 . . . . . . . . . . 11 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((♯‘𝑓) = ((♯‘𝑊) − 1) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3635com12 32 . . . . . . . . . 10 ((♯‘𝑓) = ((♯‘𝑊) − 1) → (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3712, 13, 363syl 18 . . . . . . . . 9 (𝑓(SPaths‘𝐺)𝑊 → (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3837com12 32 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 → ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏)))
3938pm4.71d 562 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊 ↔ (𝑓(SPaths‘𝐺)𝑊 ∧ ((𝑊‘0) = 𝑎 ∧ (𝑊‘(♯‘𝑓)) = 𝑏))))
408, 11, 393bitr4rd 311 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (𝑓(SPaths‘𝐺)𝑊𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4140exbidv 1924 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏)) → (∃𝑓 𝑓(SPaths‘𝐺)𝑊 ↔ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4241pm5.32da 579 . . . 4 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊)))
43 wspthnon 29041 . . . 4 (𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏) ↔ (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑊))
4442, 43bitr4di 288 . . 3 ((𝑎𝑉𝑏𝑉) → ((𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏)))
45442rexbiia 3215 . 2 (∃𝑎𝑉𝑏𝑉 (𝑊 ∈ (𝑎(𝑁 WWalksNOn 𝐺)𝑏) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
461, 6, 453bitri 296 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑎𝑉𝑏𝑉 𝑊 ∈ (𝑎(𝑁 WSPathsNOn 𝐺)𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wrex 3070  Vcvv 3474   class class class wbr 5142  cfv 6533  (class class class)co 7394  cc 11092  0cc0 11094  1c1 11095   + caddc 11097  cmin 11428  0cn0 12456  chash 14274  Word cword 14448  Vtxcvtx 28185  Walkscwlks 28782  SPathscspths 28899  SPathsOncspthson 28901   WWalksN cwwlksn 29009   WWalksNOn cwwlksnon 29010   WSPathsN cwwspthsn 29011   WSPathsNOn cwwspthsnon 29012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-n0 12457  df-z 12543  df-uz 12807  df-fz 13469  df-fzo 13612  df-hash 14275  df-word 14449  df-wlks 28785  df-wlkson 28786  df-trls 28878  df-trlson 28879  df-pths 28902  df-spths 28903  df-spthson 28905  df-wwlks 29013  df-wwlksn 29014  df-wwlksnon 29015  df-wspthsn 29016  df-wspthsnon 29017
This theorem is referenced by:  wspniunwspnon  29106  elwspths2spth  29150  fusgr2wsp2nb  29516
  Copyright terms: Public domain W3C validator