Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlt2addrd Structured version   Visualization version   GIF version

Theorem xlt2addrd 31663
Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017.)
Hypotheses
Ref Expression
xlt2addrd.1 (𝜑𝐴 ∈ ℝ)
xlt2addrd.2 (𝜑𝐵 ∈ ℝ*)
xlt2addrd.3 (𝜑𝐶 ∈ ℝ*)
xlt2addrd.4 (𝜑𝐵 ≠ -∞)
xlt2addrd.5 (𝜑𝐶 ≠ -∞)
xlt2addrd.6 (𝜑𝐴 < (𝐵 +𝑒 𝐶))
Assertion
Ref Expression
xlt2addrd (𝜑 → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Distinct variable groups:   𝑏,𝑐,𝐴   𝐵,𝑏,𝑐   𝐶,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑏,𝑐)

Proof of Theorem xlt2addrd
StepHypRef Expression
1 xlt2addrd.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
21rexrd 11205 . . . . 5 (𝜑𝐴 ∈ ℝ*)
32ad2antrr 724 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ*)
4 0xr 11202 . . . . 5 0 ∈ ℝ*
54a1i 11 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 0 ∈ ℝ*)
6 xaddid1 13160 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 +𝑒 0) = 𝐴)
76eqcomd 2742 . . . . 5 (𝐴 ∈ ℝ*𝐴 = (𝐴 +𝑒 0))
83, 7syl 17 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 𝐴 = (𝐴 +𝑒 0))
91ad2antrr 724 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ)
10 ltpnf 13041 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 < +∞)
119, 10syl 17 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 𝐴 < +∞)
12 simplr 767 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 𝐵 = +∞)
1311, 12breqtrrd 5133 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 𝐴 < 𝐵)
14 0ltpnf 13043 . . . . 5 0 < +∞
15 simpr 485 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 𝐶 = +∞)
1614, 15breqtrrid 5143 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → 0 < 𝐶)
17 oveq1 7364 . . . . . . 7 (𝑏 = 𝐴 → (𝑏 +𝑒 𝑐) = (𝐴 +𝑒 𝑐))
1817eqeq2d 2747 . . . . . 6 (𝑏 = 𝐴 → (𝐴 = (𝑏 +𝑒 𝑐) ↔ 𝐴 = (𝐴 +𝑒 𝑐)))
19 breq1 5108 . . . . . 6 (𝑏 = 𝐴 → (𝑏 < 𝐵𝐴 < 𝐵))
2018, 193anbi12d 1437 . . . . 5 (𝑏 = 𝐴 → ((𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = (𝐴 +𝑒 𝑐) ∧ 𝐴 < 𝐵𝑐 < 𝐶)))
21 oveq2 7365 . . . . . . 7 (𝑐 = 0 → (𝐴 +𝑒 𝑐) = (𝐴 +𝑒 0))
2221eqeq2d 2747 . . . . . 6 (𝑐 = 0 → (𝐴 = (𝐴 +𝑒 𝑐) ↔ 𝐴 = (𝐴 +𝑒 0)))
23 breq1 5108 . . . . . 6 (𝑐 = 0 → (𝑐 < 𝐶 ↔ 0 < 𝐶))
2422, 233anbi13d 1438 . . . . 5 (𝑐 = 0 → ((𝐴 = (𝐴 +𝑒 𝑐) ∧ 𝐴 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = (𝐴 +𝑒 0) ∧ 𝐴 < 𝐵 ∧ 0 < 𝐶)))
2520, 24rspc2ev 3592 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (𝐴 = (𝐴 +𝑒 0) ∧ 𝐴 < 𝐵 ∧ 0 < 𝐶)) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
263, 5, 8, 13, 16, 25syl113anc 1382 . . 3 (((𝜑𝐵 = +∞) ∧ 𝐶 = +∞) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
272ad2antrr 724 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 𝐴 ∈ ℝ*)
28 xlt2addrd.3 . . . . . . . 8 (𝜑𝐶 ∈ ℝ*)
2928ad2antrr 724 . . . . . . 7 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 𝐶 ∈ ℝ*)
30 1xr 11214 . . . . . . . . 9 1 ∈ ℝ*
3130a1i 11 . . . . . . . 8 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 1 ∈ ℝ*)
3231xnegcld 13219 . . . . . . 7 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → -𝑒1 ∈ ℝ*)
3329, 32xaddcld 13220 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 +𝑒 -𝑒1) ∈ ℝ*)
3433xnegcld 13219 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → -𝑒(𝐶 +𝑒 -𝑒1) ∈ ℝ*)
3527, 34xaddcld 13220 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) ∈ ℝ*)
361ad2antrr 724 . . . . . . 7 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 𝐴 ∈ ℝ)
3736renemnfd 11207 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 𝐴 ≠ -∞)
38 xrnepnf 13039 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) ↔ (𝐶 ∈ ℝ ∨ 𝐶 = -∞))
3938biimpi 215 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) → (𝐶 ∈ ℝ ∨ 𝐶 = -∞))
4029, 39sylancom 588 . . . . . . . . . . . . 13 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 ∈ ℝ ∨ 𝐶 = -∞))
4140orcomd 869 . . . . . . . . . . . 12 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 = -∞ ∨ 𝐶 ∈ ℝ))
42 xlt2addrd.5 . . . . . . . . . . . . . 14 (𝜑𝐶 ≠ -∞)
4342ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 𝐶 ≠ -∞)
4443neneqd 2948 . . . . . . . . . . . 12 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → ¬ 𝐶 = -∞)
45 pm2.53 849 . . . . . . . . . . . 12 ((𝐶 = -∞ ∨ 𝐶 ∈ ℝ) → (¬ 𝐶 = -∞ → 𝐶 ∈ ℝ))
4641, 44, 45sylc 65 . . . . . . . . . . 11 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 𝐶 ∈ ℝ)
47 1re 11155 . . . . . . . . . . 11 1 ∈ ℝ
48 rexsub 13152 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐶 +𝑒 -𝑒1) = (𝐶 − 1))
4946, 47, 48sylancl 586 . . . . . . . . . 10 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 +𝑒 -𝑒1) = (𝐶 − 1))
50 resubcl 11465 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐶 − 1) ∈ ℝ)
5146, 47, 50sylancl 586 . . . . . . . . . 10 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 − 1) ∈ ℝ)
5249, 51eqeltrd 2838 . . . . . . . . 9 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 +𝑒 -𝑒1) ∈ ℝ)
53 rexneg 13130 . . . . . . . . 9 ((𝐶 +𝑒 -𝑒1) ∈ ℝ → -𝑒(𝐶 +𝑒 -𝑒1) = -(𝐶 +𝑒 -𝑒1))
5452, 53syl 17 . . . . . . . 8 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → -𝑒(𝐶 +𝑒 -𝑒1) = -(𝐶 +𝑒 -𝑒1))
5552renegcld 11582 . . . . . . . 8 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → -(𝐶 +𝑒 -𝑒1) ∈ ℝ)
5654, 55eqeltrd 2838 . . . . . . 7 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → -𝑒(𝐶 +𝑒 -𝑒1) ∈ ℝ)
5756renemnfd 11207 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → -𝑒(𝐶 +𝑒 -𝑒1) ≠ -∞)
5852renemnfd 11207 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 +𝑒 -𝑒1) ≠ -∞)
59 xaddass 13168 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (-𝑒(𝐶 +𝑒 -𝑒1) ∈ ℝ* ∧ -𝑒(𝐶 +𝑒 -𝑒1) ≠ -∞) ∧ ((𝐶 +𝑒 -𝑒1) ∈ ℝ* ∧ (𝐶 +𝑒 -𝑒1) ≠ -∞)) → ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 (𝐶 +𝑒 -𝑒1)) = (𝐴 +𝑒 (-𝑒(𝐶 +𝑒 -𝑒1) +𝑒 (𝐶 +𝑒 -𝑒1))))
6027, 37, 34, 57, 33, 58, 59syl222anc 1386 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 (𝐶 +𝑒 -𝑒1)) = (𝐴 +𝑒 (-𝑒(𝐶 +𝑒 -𝑒1) +𝑒 (𝐶 +𝑒 -𝑒1))))
61 xaddcom 13159 . . . . . . . 8 ((-𝑒(𝐶 +𝑒 -𝑒1) ∈ ℝ* ∧ (𝐶 +𝑒 -𝑒1) ∈ ℝ*) → (-𝑒(𝐶 +𝑒 -𝑒1) +𝑒 (𝐶 +𝑒 -𝑒1)) = ((𝐶 +𝑒 -𝑒1) +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)))
6234, 33, 61syl2anc 584 . . . . . . 7 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (-𝑒(𝐶 +𝑒 -𝑒1) +𝑒 (𝐶 +𝑒 -𝑒1)) = ((𝐶 +𝑒 -𝑒1) +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)))
63 xnegid 13157 . . . . . . . 8 ((𝐶 +𝑒 -𝑒1) ∈ ℝ* → ((𝐶 +𝑒 -𝑒1) +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) = 0)
6433, 63syl 17 . . . . . . 7 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → ((𝐶 +𝑒 -𝑒1) +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) = 0)
6562, 64eqtrd 2776 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (-𝑒(𝐶 +𝑒 -𝑒1) +𝑒 (𝐶 +𝑒 -𝑒1)) = 0)
6665oveq2d 7373 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 +𝑒 (-𝑒(𝐶 +𝑒 -𝑒1) +𝑒 (𝐶 +𝑒 -𝑒1))) = (𝐴 +𝑒 0))
6727, 6syl 17 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 +𝑒 0) = 𝐴)
6860, 66, 673eqtrrd 2781 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 𝐴 = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 (𝐶 +𝑒 -𝑒1)))
6936, 51resubcld 11583 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 − (𝐶 − 1)) ∈ ℝ)
70 ltpnf 13041 . . . . . 6 ((𝐴 − (𝐶 − 1)) ∈ ℝ → (𝐴 − (𝐶 − 1)) < +∞)
7169, 70syl 17 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 − (𝐶 − 1)) < +∞)
72 rexsub 13152 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐶 +𝑒 -𝑒1) ∈ ℝ) → (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) = (𝐴 − (𝐶 +𝑒 -𝑒1)))
7336, 52, 72syl2anc 584 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) = (𝐴 − (𝐶 +𝑒 -𝑒1)))
7449oveq2d 7373 . . . . . 6 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 − (𝐶 +𝑒 -𝑒1)) = (𝐴 − (𝐶 − 1)))
7573, 74eqtrd 2776 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) = (𝐴 − (𝐶 − 1)))
76 simplr 767 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → 𝐵 = +∞)
7771, 75, 763brtr4d 5137 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) < 𝐵)
7846ltm1d 12087 . . . . 5 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 − 1) < 𝐶)
7949, 78eqbrtrd 5127 . . . 4 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → (𝐶 +𝑒 -𝑒1) < 𝐶)
80 oveq1 7364 . . . . . . 7 (𝑏 = (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) → (𝑏 +𝑒 𝑐) = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 𝑐))
8180eqeq2d 2747 . . . . . 6 (𝑏 = (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) → (𝐴 = (𝑏 +𝑒 𝑐) ↔ 𝐴 = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 𝑐)))
82 breq1 5108 . . . . . 6 (𝑏 = (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) → (𝑏 < 𝐵 ↔ (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) < 𝐵))
8381, 823anbi12d 1437 . . . . 5 (𝑏 = (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) → ((𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 𝑐) ∧ (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) < 𝐵𝑐 < 𝐶)))
84 oveq2 7365 . . . . . . 7 (𝑐 = (𝐶 +𝑒 -𝑒1) → ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 𝑐) = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 (𝐶 +𝑒 -𝑒1)))
8584eqeq2d 2747 . . . . . 6 (𝑐 = (𝐶 +𝑒 -𝑒1) → (𝐴 = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 𝑐) ↔ 𝐴 = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 (𝐶 +𝑒 -𝑒1))))
86 breq1 5108 . . . . . 6 (𝑐 = (𝐶 +𝑒 -𝑒1) → (𝑐 < 𝐶 ↔ (𝐶 +𝑒 -𝑒1) < 𝐶))
8785, 863anbi13d 1438 . . . . 5 (𝑐 = (𝐶 +𝑒 -𝑒1) → ((𝐴 = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 𝑐) ∧ (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 (𝐶 +𝑒 -𝑒1)) ∧ (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) < 𝐵 ∧ (𝐶 +𝑒 -𝑒1) < 𝐶)))
8883, 87rspc2ev 3592 . . . 4 (((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) ∈ ℝ* ∧ (𝐶 +𝑒 -𝑒1) ∈ ℝ* ∧ (𝐴 = ((𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) +𝑒 (𝐶 +𝑒 -𝑒1)) ∧ (𝐴 +𝑒 -𝑒(𝐶 +𝑒 -𝑒1)) < 𝐵 ∧ (𝐶 +𝑒 -𝑒1) < 𝐶)) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
8935, 33, 68, 77, 79, 88syl113anc 1382 . . 3 (((𝜑𝐵 = +∞) ∧ 𝐶 ≠ +∞) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
9026, 89pm2.61dane 3032 . 2 ((𝜑𝐵 = +∞) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
91 xlt2addrd.2 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
9291ad2antrr 724 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ*)
9330a1i 11 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 1 ∈ ℝ*)
9493xnegcld 13219 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → -𝑒1 ∈ ℝ*)
9592, 94xaddcld 13220 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 +𝑒 -𝑒1) ∈ ℝ*)
962ad2antrr 724 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ*)
9795xnegcld 13219 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → -𝑒(𝐵 +𝑒 -𝑒1) ∈ ℝ*)
9896, 97xaddcld 13220 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) ∈ ℝ*)
99 xaddcom 13159 . . . . . 6 (((𝐵 +𝑒 -𝑒1) ∈ ℝ* ∧ (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) ∈ ℝ*) → ((𝐵 +𝑒 -𝑒1) +𝑒 (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1))) = ((𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) +𝑒 (𝐵 +𝑒 -𝑒1)))
10095, 98, 99syl2anc 584 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → ((𝐵 +𝑒 -𝑒1) +𝑒 (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1))) = ((𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) +𝑒 (𝐵 +𝑒 -𝑒1)))
1011ad2antrr 724 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐴 ∈ ℝ)
102101renemnfd 11207 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐴 ≠ -∞)
103 simplr 767 . . . . . . . . . . . . . 14 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐵 ≠ +∞)
104 xrnepnf 13039 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
105104biimpi 215 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
10692, 103, 105syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
107106orcomd 869 . . . . . . . . . . . 12 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 = -∞ ∨ 𝐵 ∈ ℝ))
108 xlt2addrd.4 . . . . . . . . . . . . . 14 (𝜑𝐵 ≠ -∞)
109108ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐵 ≠ -∞)
110109neneqd 2948 . . . . . . . . . . . 12 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → ¬ 𝐵 = -∞)
111 pm2.53 849 . . . . . . . . . . . 12 ((𝐵 = -∞ ∨ 𝐵 ∈ ℝ) → (¬ 𝐵 = -∞ → 𝐵 ∈ ℝ))
112107, 110, 111sylc 65 . . . . . . . . . . 11 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐵 ∈ ℝ)
113 rexsub 13152 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 +𝑒 -𝑒1) = (𝐵 − 1))
114112, 47, 113sylancl 586 . . . . . . . . . 10 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 +𝑒 -𝑒1) = (𝐵 − 1))
115 resubcl 11465 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐵 − 1) ∈ ℝ)
116112, 47, 115sylancl 586 . . . . . . . . . 10 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 − 1) ∈ ℝ)
117114, 116eqeltrd 2838 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 +𝑒 -𝑒1) ∈ ℝ)
118 rexneg 13130 . . . . . . . . 9 ((𝐵 +𝑒 -𝑒1) ∈ ℝ → -𝑒(𝐵 +𝑒 -𝑒1) = -(𝐵 +𝑒 -𝑒1))
119117, 118syl 17 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → -𝑒(𝐵 +𝑒 -𝑒1) = -(𝐵 +𝑒 -𝑒1))
120117renegcld 11582 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → -(𝐵 +𝑒 -𝑒1) ∈ ℝ)
121119, 120eqeltrd 2838 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → -𝑒(𝐵 +𝑒 -𝑒1) ∈ ℝ)
122121renemnfd 11207 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → -𝑒(𝐵 +𝑒 -𝑒1) ≠ -∞)
123117renemnfd 11207 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 +𝑒 -𝑒1) ≠ -∞)
124 xaddass 13168 . . . . . 6 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (-𝑒(𝐵 +𝑒 -𝑒1) ∈ ℝ* ∧ -𝑒(𝐵 +𝑒 -𝑒1) ≠ -∞) ∧ ((𝐵 +𝑒 -𝑒1) ∈ ℝ* ∧ (𝐵 +𝑒 -𝑒1) ≠ -∞)) → ((𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) +𝑒 (𝐵 +𝑒 -𝑒1)) = (𝐴 +𝑒 (-𝑒(𝐵 +𝑒 -𝑒1) +𝑒 (𝐵 +𝑒 -𝑒1))))
12596, 102, 97, 122, 95, 123, 124syl222anc 1386 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → ((𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) +𝑒 (𝐵 +𝑒 -𝑒1)) = (𝐴 +𝑒 (-𝑒(𝐵 +𝑒 -𝑒1) +𝑒 (𝐵 +𝑒 -𝑒1))))
126 xaddcom 13159 . . . . . . . . 9 ((-𝑒(𝐵 +𝑒 -𝑒1) ∈ ℝ* ∧ (𝐵 +𝑒 -𝑒1) ∈ ℝ*) → (-𝑒(𝐵 +𝑒 -𝑒1) +𝑒 (𝐵 +𝑒 -𝑒1)) = ((𝐵 +𝑒 -𝑒1) +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)))
12797, 95, 126syl2anc 584 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (-𝑒(𝐵 +𝑒 -𝑒1) +𝑒 (𝐵 +𝑒 -𝑒1)) = ((𝐵 +𝑒 -𝑒1) +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)))
128 xnegid 13157 . . . . . . . . 9 ((𝐵 +𝑒 -𝑒1) ∈ ℝ* → ((𝐵 +𝑒 -𝑒1) +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) = 0)
12995, 128syl 17 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → ((𝐵 +𝑒 -𝑒1) +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) = 0)
130127, 129eqtrd 2776 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (-𝑒(𝐵 +𝑒 -𝑒1) +𝑒 (𝐵 +𝑒 -𝑒1)) = 0)
131130oveq2d 7373 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 +𝑒 (-𝑒(𝐵 +𝑒 -𝑒1) +𝑒 (𝐵 +𝑒 -𝑒1))) = (𝐴 +𝑒 0))
13296, 6syl 17 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 +𝑒 0) = 𝐴)
133131, 132eqtrd 2776 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 +𝑒 (-𝑒(𝐵 +𝑒 -𝑒1) +𝑒 (𝐵 +𝑒 -𝑒1))) = 𝐴)
134100, 125, 1333eqtrrd 2781 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐴 = ((𝐵 +𝑒 -𝑒1) +𝑒 (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1))))
135112ltm1d 12087 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 − 1) < 𝐵)
136114, 135eqbrtrd 5127 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐵 +𝑒 -𝑒1) < 𝐵)
137101, 116resubcld 11583 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 − (𝐵 − 1)) ∈ ℝ)
138 ltpnf 13041 . . . . . 6 ((𝐴 − (𝐵 − 1)) ∈ ℝ → (𝐴 − (𝐵 − 1)) < +∞)
139137, 138syl 17 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 − (𝐵 − 1)) < +∞)
140 rexsub 13152 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 +𝑒 -𝑒1) ∈ ℝ) → (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) = (𝐴 − (𝐵 +𝑒 -𝑒1)))
141101, 117, 140syl2anc 584 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) = (𝐴 − (𝐵 +𝑒 -𝑒1)))
142114oveq2d 7373 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 − (𝐵 +𝑒 -𝑒1)) = (𝐴 − (𝐵 − 1)))
143141, 142eqtrd 2776 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) = (𝐴 − (𝐵 − 1)))
144 simpr 485 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → 𝐶 = +∞)
145139, 143, 1443brtr4d 5137 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) < 𝐶)
146 oveq1 7364 . . . . . . 7 (𝑏 = (𝐵 +𝑒 -𝑒1) → (𝑏 +𝑒 𝑐) = ((𝐵 +𝑒 -𝑒1) +𝑒 𝑐))
147146eqeq2d 2747 . . . . . 6 (𝑏 = (𝐵 +𝑒 -𝑒1) → (𝐴 = (𝑏 +𝑒 𝑐) ↔ 𝐴 = ((𝐵 +𝑒 -𝑒1) +𝑒 𝑐)))
148 breq1 5108 . . . . . 6 (𝑏 = (𝐵 +𝑒 -𝑒1) → (𝑏 < 𝐵 ↔ (𝐵 +𝑒 -𝑒1) < 𝐵))
149147, 1483anbi12d 1437 . . . . 5 (𝑏 = (𝐵 +𝑒 -𝑒1) → ((𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 +𝑒 -𝑒1) +𝑒 𝑐) ∧ (𝐵 +𝑒 -𝑒1) < 𝐵𝑐 < 𝐶)))
150 oveq2 7365 . . . . . . 7 (𝑐 = (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) → ((𝐵 +𝑒 -𝑒1) +𝑒 𝑐) = ((𝐵 +𝑒 -𝑒1) +𝑒 (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1))))
151150eqeq2d 2747 . . . . . 6 (𝑐 = (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) → (𝐴 = ((𝐵 +𝑒 -𝑒1) +𝑒 𝑐) ↔ 𝐴 = ((𝐵 +𝑒 -𝑒1) +𝑒 (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)))))
152 breq1 5108 . . . . . 6 (𝑐 = (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) → (𝑐 < 𝐶 ↔ (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) < 𝐶))
153151, 1523anbi13d 1438 . . . . 5 (𝑐 = (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) → ((𝐴 = ((𝐵 +𝑒 -𝑒1) +𝑒 𝑐) ∧ (𝐵 +𝑒 -𝑒1) < 𝐵𝑐 < 𝐶) ↔ (𝐴 = ((𝐵 +𝑒 -𝑒1) +𝑒 (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1))) ∧ (𝐵 +𝑒 -𝑒1) < 𝐵 ∧ (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) < 𝐶)))
154149, 153rspc2ev 3592 . . . 4 (((𝐵 +𝑒 -𝑒1) ∈ ℝ* ∧ (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) ∈ ℝ* ∧ (𝐴 = ((𝐵 +𝑒 -𝑒1) +𝑒 (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1))) ∧ (𝐵 +𝑒 -𝑒1) < 𝐵 ∧ (𝐴 +𝑒 -𝑒(𝐵 +𝑒 -𝑒1)) < 𝐶)) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
15595, 98, 134, 136, 145, 154syl113anc 1382 . . 3 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 = +∞) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
1561ad2antrr 724 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐴 ∈ ℝ)
15791ad2antrr 724 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐵 ∈ ℝ*)
158 simplr 767 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐵 ≠ +∞)
159157, 158, 105syl2anc 584 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = -∞))
160159orcomd 869 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → (𝐵 = -∞ ∨ 𝐵 ∈ ℝ))
161108ad2antrr 724 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐵 ≠ -∞)
162161neneqd 2948 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → ¬ 𝐵 = -∞)
163160, 162, 111sylc 65 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐵 ∈ ℝ)
16428ad2antrr 724 . . . . . . . . 9 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐶 ∈ ℝ*)
165164, 39sylancom 588 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → (𝐶 ∈ ℝ ∨ 𝐶 = -∞))
166165orcomd 869 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → (𝐶 = -∞ ∨ 𝐶 ∈ ℝ))
16742ad2antrr 724 . . . . . . . 8 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐶 ≠ -∞)
168167neneqd 2948 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → ¬ 𝐶 = -∞)
169166, 168, 45sylc 65 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐶 ∈ ℝ)
170 xlt2addrd.6 . . . . . . . 8 (𝜑𝐴 < (𝐵 +𝑒 𝐶))
171170ad2antrr 724 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐴 < (𝐵 +𝑒 𝐶))
172 rexadd 13151 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
173163, 169, 172syl2anc 584 . . . . . . 7 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
174171, 173breqtrd 5131 . . . . . 6 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → 𝐴 < (𝐵 + 𝐶))
175156, 163, 169, 174lt2addrd 31656 . . . . 5 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
176 rexadd 13151 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑏 +𝑒 𝑐) = (𝑏 + 𝑐))
177176eqeq2d 2747 . . . . . . 7 ((𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝐴 = (𝑏 +𝑒 𝑐) ↔ 𝐴 = (𝑏 + 𝑐)))
1781773anbi1d 1440 . . . . . 6 ((𝑏 ∈ ℝ ∧ 𝑐 ∈ ℝ) → ((𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶)))
1791782rexbiia 3209 . . . . 5 (∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) ↔ ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 + 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
180175, 179sylibr 233 . . . 4 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
181 ressxr 11199 . . . . . 6 ℝ ⊆ ℝ*
182 ssrexv 4011 . . . . . 6 (ℝ ⊆ ℝ* → (∃𝑐 ∈ ℝ (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) → ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶)))
183181, 182ax-mp 5 . . . . 5 (∃𝑐 ∈ ℝ (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) → ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
184183reximi 3087 . . . 4 (∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) → ∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
185 ssrexv 4011 . . . . 5 (ℝ ⊆ ℝ* → (∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶)))
186181, 185ax-mp 5 . . . 4 (∃𝑏 ∈ ℝ ∃𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
187180, 184, 1863syl 18 . . 3 (((𝜑𝐵 ≠ +∞) ∧ 𝐶 ≠ +∞) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
188155, 187pm2.61dane 3032 . 2 ((𝜑𝐵 ≠ +∞) → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
18990, 188pm2.61dane 3032 1 (𝜑 → ∃𝑏 ∈ ℝ*𝑐 ∈ ℝ* (𝐴 = (𝑏 +𝑒 𝑐) ∧ 𝑏 < 𝐵𝑐 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  wss 3910   class class class wbr 5105  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188   < clt 11189  cmin 11385  -cneg 11386  -𝑒cxne 13030   +𝑒 cxad 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-2 12216  df-rp 12916  df-xneg 13033  df-xadd 13034
This theorem is referenced by:  xrofsup  31672
  Copyright terms: Public domain W3C validator