Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opreu2reurex | Structured version Visualization version GIF version |
Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.) |
Ref | Expression |
---|---|
opreu2reurex.a | ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
opreu2reurex | ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2765 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉 ↔ 〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉) | |
2 | vex 3413 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
3 | vex 3413 | . . . . . . . . 9 ⊢ 𝑏 ∈ V | |
4 | 2, 3 | opth 5336 | . . . . . . . 8 ⊢ (〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉 ↔ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
5 | 1, 4 | bitri 278 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉 ↔ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
6 | 5 | imbi2i 339 | . . . . . 6 ⊢ ((𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
8 | 7 | 2ralbidva 3127 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
9 | 8 | 2rexbiia 3222 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
10 | 9 | anbi2i 625 | . 2 ⊢ ((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉)) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
11 | opreu2reurex.a | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) | |
12 | 11 | reu3op 6121 | . 2 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) |
13 | 2reu4 4419 | . 2 ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) | |
14 | 10, 12, 13 | 3bitr4i 306 | 1 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ∃!wreu 3072 〈cop 4528 × cxp 5522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-iun 4885 df-opab 5095 df-xp 5530 df-rel 5531 |
This theorem is referenced by: opreu2reu 6124 2sqreuop 26145 2sqreuopnn 26146 2sqreuoplt 26147 2sqreuopltb 26148 2sqreuopnnlt 26149 2sqreuopnnltb 26150 opreu2reu1 30353 |
Copyright terms: Public domain | W3C validator |