| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opreu2reurex | Structured version Visualization version GIF version | ||
| Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.) |
| Ref | Expression |
|---|---|
| opreu2reurex.a | ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opreu2reurex | ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2738 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉 ↔ 〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉) | |
| 2 | vex 3440 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
| 3 | vex 3440 | . . . . . . . . 9 ⊢ 𝑏 ∈ V | |
| 4 | 2, 3 | opth 5414 | . . . . . . . 8 ⊢ (〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉 ↔ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 5 | 1, 4 | bitri 275 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉 ↔ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
| 6 | 5 | imbi2i 336 | . . . . . 6 ⊢ ((𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 7 | 6 | a1i 11 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
| 8 | 7 | 2ralbidva 3194 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
| 9 | 8 | 2rexbiia 3193 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
| 10 | 9 | anbi2i 623 | . 2 ⊢ ((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉)) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
| 11 | opreu2reurex.a | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) | |
| 12 | 11 | reu3op 6239 | . 2 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) |
| 13 | 2reu4 4470 | . 2 ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) | |
| 14 | 10, 12, 13 | 3bitr4i 303 | 1 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 〈cop 4579 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-iun 4941 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: opreu2reu 6242 2sqreuop 27400 2sqreuopnn 27401 2sqreuoplt 27402 2sqreuopltb 27403 2sqreuopnnlt 27404 2sqreuopnnltb 27405 opreu2reu1 32463 |
| Copyright terms: Public domain | W3C validator |