MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opreu2reurex Structured version   Visualization version   GIF version

Theorem opreu2reurex 6241
Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.)
Hypothesis
Ref Expression
opreu2reurex.a (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
Assertion
Ref Expression
opreu2reurex (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝   𝐵,𝑎,𝑏,𝑝   𝜑,𝑎,𝑏   𝜒,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑎,𝑏)

Proof of Theorem opreu2reurex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2738 . . . . . . . 8 (⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩)
2 vex 3440 . . . . . . . . 9 𝑎 ∈ V
3 vex 3440 . . . . . . . . 9 𝑏 ∈ V
42, 3opth 5414 . . . . . . . 8 (⟨𝑎, 𝑏⟩ = ⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥𝑏 = 𝑦))
51, 4bitri 275 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩ ↔ (𝑎 = 𝑥𝑏 = 𝑦))
65imbi2i 336 . . . . . 6 ((𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩) ↔ (𝜒 → (𝑎 = 𝑥𝑏 = 𝑦)))
76a1i 11 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ (𝑎𝐴𝑏𝐵)) → ((𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩) ↔ (𝜒 → (𝑎 = 𝑥𝑏 = 𝑦))))
872ralbidva 3194 . . . 4 ((𝑥𝐴𝑦𝐵) → (∀𝑎𝐴𝑏𝐵 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩) ↔ ∀𝑎𝐴𝑏𝐵 (𝜒 → (𝑎 = 𝑥𝑏 = 𝑦))))
982rexbiia 3193 . . 3 (∃𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩) ↔ ∃𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 (𝜒 → (𝑎 = 𝑥𝑏 = 𝑦)))
109anbi2i 623 . 2 ((∃𝑎𝐴𝑏𝐵 𝜒 ∧ ∃𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)) ↔ (∃𝑎𝐴𝑏𝐵 𝜒 ∧ ∃𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 (𝜒 → (𝑎 = 𝑥𝑏 = 𝑦))))
11 opreu2reurex.a . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
1211reu3op 6239 . 2 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃𝑎𝐴𝑏𝐵 𝜒 ∧ ∃𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 (𝜒 → ⟨𝑥, 𝑦⟩ = ⟨𝑎, 𝑏⟩)))
13 2reu4 4470 . 2 ((∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒) ↔ (∃𝑎𝐴𝑏𝐵 𝜒 ∧ ∃𝑥𝐴𝑦𝐵𝑎𝐴𝑏𝐵 (𝜒 → (𝑎 = 𝑥𝑏 = 𝑦))))
1410, 12, 133bitr4i 303 1 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  cop 4579   × cxp 5612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-iun 4941  df-opab 5152  df-xp 5620  df-rel 5621
This theorem is referenced by:  opreu2reu  6242  2sqreuop  27400  2sqreuopnn  27401  2sqreuoplt  27402  2sqreuopltb  27403  2sqreuopnnlt  27404  2sqreuopnnltb  27405  opreu2reu1  32463
  Copyright terms: Public domain W3C validator