![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opreu2reurex | Structured version Visualization version GIF version |
Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.) |
Ref | Expression |
---|---|
opreu2reurex.a | ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
opreu2reurex | ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2747 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉 ↔ 〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉) | |
2 | vex 3492 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
3 | vex 3492 | . . . . . . . . 9 ⊢ 𝑏 ∈ V | |
4 | 2, 3 | opth 5496 | . . . . . . . 8 ⊢ (〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉 ↔ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
5 | 1, 4 | bitri 275 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉 ↔ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
6 | 5 | imbi2i 336 | . . . . . 6 ⊢ ((𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
8 | 7 | 2ralbidva 3225 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
9 | 8 | 2rexbiia 3224 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
10 | 9 | anbi2i 622 | . 2 ⊢ ((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉)) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
11 | opreu2reurex.a | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) | |
12 | 11 | reu3op 6323 | . 2 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) |
13 | 2reu4 4546 | . 2 ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) | |
14 | 10, 12, 13 | 3bitr4i 303 | 1 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∃!wreu 3386 〈cop 4654 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-iun 5017 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: opreu2reu 6326 2sqreuop 27524 2sqreuopnn 27525 2sqreuoplt 27526 2sqreuopltb 27527 2sqreuopnnlt 27528 2sqreuopnnltb 27529 opreu2reu1 32512 |
Copyright terms: Public domain | W3C validator |