Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opreu2reurex | Structured version Visualization version GIF version |
Description: There is a unique ordered pair fulfilling a wff iff there are uniquely two sets fulfilling a corresponding wff. (Contributed by AV, 24-Jun-2023.) (Revised by AV, 1-Jul-2023.) |
Ref | Expression |
---|---|
opreu2reurex.a | ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
opreu2reurex | ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2746 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉 ↔ 〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉) | |
2 | vex 3434 | . . . . . . . . 9 ⊢ 𝑎 ∈ V | |
3 | vex 3434 | . . . . . . . . 9 ⊢ 𝑏 ∈ V | |
4 | 2, 3 | opth 5393 | . . . . . . . 8 ⊢ (〈𝑎, 𝑏〉 = 〈𝑥, 𝑦〉 ↔ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
5 | 1, 4 | bitri 274 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉 ↔ (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)) |
6 | 5 | imbi2i 335 | . . . . . 6 ⊢ ((𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
7 | 6 | a1i 11 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
8 | 7 | 2ralbidva 3123 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
9 | 8 | 2rexbiia 3228 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦))) |
10 | 9 | anbi2i 622 | . 2 ⊢ ((∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉)) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) |
11 | opreu2reurex.a | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) | |
12 | 11 | reu3op 6192 | . 2 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → 〈𝑥, 𝑦〉 = 〈𝑎, 𝑏〉))) |
13 | 2reu4 4462 | . 2 ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) ↔ (∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 (𝜒 → (𝑎 = 𝑥 ∧ 𝑏 = 𝑦)))) | |
14 | 10, 12, 13 | 3bitr4i 302 | 1 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 ∃!wreu 3067 〈cop 4572 × cxp 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-iun 4931 df-opab 5141 df-xp 5594 df-rel 5595 |
This theorem is referenced by: opreu2reu 6195 2sqreuop 26591 2sqreuopnn 26592 2sqreuoplt 26593 2sqreuopltb 26594 2sqreuopnnlt 26595 2sqreuopnnltb 26596 opreu2reu1 30811 |
Copyright terms: Public domain | W3C validator |